Not Just Change the Labels, Learn the Features: Watermarking Deep Neural Networks with Multi-View Data
- URL: http://arxiv.org/abs/2403.10663v2
- Date: Thu, 18 Jul 2024 16:10:07 GMT
- Title: Not Just Change the Labels, Learn the Features: Watermarking Deep Neural Networks with Multi-View Data
- Authors: Yuxuan Li, Sarthak Kumar Maharana, Yunhui Guo,
- Abstract summary: We introduce a novel watermarking technique based on Multi-view dATa, called MAT, for efficiently embedding watermarks within DNNs.
We validate our method across various benchmarks and demonstrate its efficacy in defending against model extraction attacks.
- Score: 10.564634073196117
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing prevalence of Machine Learning as a Service (MLaaS) platforms, there is a growing focus on deep neural network (DNN) watermarking techniques. These methods are used to facilitate the verification of ownership for a target DNN model to protect intellectual property. One of the most widely employed watermarking techniques involves embedding a trigger set into the source model. Unfortunately, existing methodologies based on trigger sets are still susceptible to functionality-stealing attacks, potentially enabling adversaries to steal the functionality of the source model without a reliable means of verifying ownership. In this paper, we first introduce a novel perspective on trigger set-based watermarking methods from a feature learning perspective. Specifically, we demonstrate that by selecting data exhibiting multiple features, also referred to as \emph{multi-view data}, it becomes feasible to effectively defend functionality stealing attacks. Based on this perspective, we introduce a novel watermarking technique based on Multi-view dATa, called MAT, for efficiently embedding watermarks within DNNs. This approach involves constructing a trigger set with multi-view data and incorporating a simple feature-based regularization method for training the source model. We validate our method across various benchmarks and demonstrate its efficacy in defending against model extraction attacks, surpassing relevant baselines by a significant margin. The code is available at: \href{https://github.com/liyuxuan-github/MAT}{https://github.com/liyuxuan-github/MAT}.
Related papers
- WAPITI: A Watermark for Finetuned Open-Source LLMs [42.1087852764299]
WAPITI is a new method that transfers watermarking from base models to fine-tuned models through parameter integration.
We show that our method can successfully inject watermarks and is highly compatible with fine-tuned models.
arXiv Detail & Related papers (2024-10-09T01:41:14Z) - On the Weaknesses of Backdoor-based Model Watermarking: An Information-theoretic Perspective [39.676548104635096]
Safeguarding the intellectual property of machine learning models has emerged as a pressing concern in AI security.
Model watermarking is a powerful technique for protecting ownership of machine learning models.
We propose a novel model watermarking scheme, In-distribution Watermark Embedding (IWE), to overcome the limitations of existing method.
arXiv Detail & Related papers (2024-09-10T00:55:21Z) - Probabilistically Robust Watermarking of Neural Networks [4.332441337407564]
We introduce a novel trigger set-based watermarking approach that demonstrates resilience against functionality stealing attacks.
Our approach does not require additional model training and can be applied to any model architecture.
arXiv Detail & Related papers (2024-01-16T10:32:13Z) - Domain Watermark: Effective and Harmless Dataset Copyright Protection is
Closed at Hand [96.26251471253823]
backdoor-based dataset ownership verification (DOV) is currently the only feasible approach to protect the copyright of open-source datasets.
We make watermarked models (trained on the protected dataset) correctly classify some hard' samples that will be misclassified by the benign model.
arXiv Detail & Related papers (2023-10-09T11:23:05Z) - Did You Train on My Dataset? Towards Public Dataset Protection with
Clean-Label Backdoor Watermarking [54.40184736491652]
We propose a backdoor-based watermarking approach that serves as a general framework for safeguarding public-available data.
By inserting a small number of watermarking samples into the dataset, our approach enables the learning model to implicitly learn a secret function set by defenders.
This hidden function can then be used as a watermark to track down third-party models that use the dataset illegally.
arXiv Detail & Related papers (2023-03-20T21:54:30Z) - On Function-Coupled Watermarks for Deep Neural Networks [15.478746926391146]
We propose a novel DNN watermarking solution that can effectively defend against watermark removal attacks.
Our key insight is to enhance the coupling of the watermark and model functionalities.
Results show a 100% watermark authentication success rate under aggressive watermark removal attacks.
arXiv Detail & Related papers (2023-02-08T05:55:16Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z) - Open-sourced Dataset Protection via Backdoor Watermarking [87.15630326131901]
We propose a emphbackdoor embedding based dataset watermarking method to protect an open-sourced image-classification dataset.
We use a hypothesis test guided method for dataset verification based on the posterior probability generated by the suspicious third-party model.
arXiv Detail & Related papers (2020-10-12T16:16:27Z) - Attentive WaveBlock: Complementarity-enhanced Mutual Networks for
Unsupervised Domain Adaptation in Person Re-identification and Beyond [97.25179345878443]
This paper proposes a novel light-weight module, the Attentive WaveBlock (AWB)
AWB can be integrated into the dual networks of mutual learning to enhance the complementarity and further depress noise in the pseudo-labels.
Experiments demonstrate that the proposed method achieves state-of-the-art performance with significant improvements on multiple UDA person re-identification tasks.
arXiv Detail & Related papers (2020-06-11T15:40:40Z) - Model Watermarking for Image Processing Networks [120.918532981871]
How to protect the intellectual property of deep models is a very important but seriously under-researched problem.
We propose the first model watermarking framework for protecting image processing models.
arXiv Detail & Related papers (2020-02-25T18:36:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.