BlockDoor: Blocking Backdoor Based Watermarks in Deep Neural Networks
- URL: http://arxiv.org/abs/2412.12194v1
- Date: Sat, 14 Dec 2024 06:38:01 GMT
- Title: BlockDoor: Blocking Backdoor Based Watermarks in Deep Neural Networks
- Authors: Yi Hao Puah, Anh Tu Ngo, Nandish Chattopadhyay, Anupam Chattopadhyay,
- Abstract summary: BlockDoor is a wrapper to block all three different kinds of Trigger samples, which are used in the literature as means to embed watermarks within the trained neural networks as backdoors.
It is able to significantly reduce the watermark validation accuracy of the Trigger set by up to $98%$ without compromising on functionality.
- Score: 3.1858340237924776
- License:
- Abstract: Adoption of machine learning models across industries have turned Neural Networks (DNNs) into a prized Intellectual Property (IP), which needs to be protected from being stolen or being used without authorization. This topic gave rise to multiple watermarking schemes, through which, one can establish the ownership of a model. Watermarking using backdooring is the most well established method available in the literature, with specific works demonstrating the difficulty in removing the watermarks, embedded as backdoors within the weights of the network. However, in our work, we have identified a critical flaw in the design of the watermark verification with backdoors, pertaining to the behaviour of the samples of the Trigger Set, which acts as the secret key. In this paper, we present BlockDoor, which is a comprehensive package of techniques that is used as a wrapper to block all three different kinds of Trigger samples, which are used in the literature as means to embed watermarks within the trained neural networks as backdoors. The framework implemented through BlockDoor is able to detect potential Trigger samples, through separate functions for adversarial noise based triggers, out-of-distribution triggers and random label based triggers. Apart from a simple Denial-of-Service for a potential Trigger sample, our approach is also able to modify the Trigger samples for correct machine learning functionality. Extensive evaluation of BlockDoor establishes that it is able to significantly reduce the watermark validation accuracy of the Trigger set by up to $98\%$ without compromising on functionality, delivering up to a less than $1\%$ drop on the clean samples. BlockDoor has been tested on multiple datasets and neural architectures.
Related papers
- Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - Not Just Change the Labels, Learn the Features: Watermarking Deep Neural Networks with Multi-View Data [10.564634073196117]
We introduce a novel watermarking technique based on Multi-view dATa, called MAT, for efficiently embedding watermarks within DNNs.
We validate our method across various benchmarks and demonstrate its efficacy in defending against model extraction attacks.
arXiv Detail & Related papers (2024-03-15T20:12:41Z) - Model Pairing Using Embedding Translation for Backdoor Attack Detection on Open-Set Classification Tasks [63.269788236474234]
We propose to use model pairs on open-set classification tasks for detecting backdoors.
We show that this score, can be an indicator for the presence of a backdoor despite models being of different architectures.
This technique allows for the detection of backdoors on models designed for open-set classification tasks, which is little studied in the literature.
arXiv Detail & Related papers (2024-02-28T21:29:16Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model.
We propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior.
Our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks.
arXiv Detail & Related papers (2023-09-09T12:46:08Z) - OVLA: Neural Network Ownership Verification using Latent Watermarks [7.661766773170363]
We present a novel methodology for neural network ownership verification based on latent watermarks.
We show that our approach offers strong defense against backdoor detection, backdoor removal and surrogate model attacks.
arXiv Detail & Related papers (2023-06-15T17:45:03Z) - FreeEagle: Detecting Complex Neural Trojans in Data-Free Cases [50.065022493142116]
Trojan attack on deep neural networks, also known as backdoor attack, is a typical threat to artificial intelligence.
FreeEagle is the first data-free backdoor detection method that can effectively detect complex backdoor attacks.
arXiv Detail & Related papers (2023-02-28T11:31:29Z) - On Function-Coupled Watermarks for Deep Neural Networks [15.478746926391146]
We propose a novel DNN watermarking solution that can effectively defend against watermark removal attacks.
Our key insight is to enhance the coupling of the watermark and model functionalities.
Results show a 100% watermark authentication success rate under aggressive watermark removal attacks.
arXiv Detail & Related papers (2023-02-08T05:55:16Z) - Neural network fragile watermarking with no model performance
degradation [28.68910526223425]
We propose a novel neural network fragile watermarking with no model performance degradation.
Experiments show that the proposed method can effectively detect model malicious fine-tuning with no model performance degradation.
arXiv Detail & Related papers (2022-08-16T07:55:20Z) - Reversible Watermarking in Deep Convolutional Neural Networks for
Integrity Authentication [78.165255859254]
We propose a reversible watermarking algorithm for integrity authentication.
The influence of embedding reversible watermarking on the classification performance is less than 0.5%.
At the same time, the integrity of the model can be verified by applying the reversible watermarking.
arXiv Detail & Related papers (2021-04-09T09:32:21Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.