Detection of Fast-Moving Objects with Neuromorphic Hardware
- URL: http://arxiv.org/abs/2403.10677v2
- Date: Mon, 16 Sep 2024 19:18:02 GMT
- Title: Detection of Fast-Moving Objects with Neuromorphic Hardware
- Authors: Andreas Ziegler, Karl Vetter, Thomas Gossard, Jonas Tebbe, Sebastian Otte, Andreas Zell,
- Abstract summary: Spiking Neural Networks (SNNs) are often viewed as the next generation of Neural Networks (NNs)
Neuromorphic Computing (NC) and SNNs in particular are often viewed as the next generation of Neural Networks (NNs)
- Score: 12.323012135924374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuromorphic Computing (NC) and Spiking Neural Networks (SNNs) in particular are often viewed as the next generation of Neural Networks (NNs). NC is a novel bio-inspired paradigm for energy efficient neural computation, often relying on SNNs in which neurons communicate via spikes in a sparse, event-based manner. This communication via spikes can be exploited by neuromorphic hardware implementations very effectively and results in a drastic reductions of power consumption and latency in contrast to regular GPU-based NNs. In recent years, neuromorphic hardware has become more accessible, and the support of learning frameworks has improved. However, available hardware is partially still experimental, and it is not transparent what these solutions are effectively capable of, how they integrate into real-world robotics applications, and how they realistically benefit energy efficiency and latency. In this work, we provide the robotics research community with an overview of what is possible with SNNs on neuromorphic hardware focusing on real-time processing. We introduce a benchmark of three popular neuromorphic hardware devices for the task of event-based object detection. Moreover, we show that an SNN on a neuromorphic hardware is able to run in a challenging table tennis robot setup in real-time.
Related papers
- Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
Spiking Neural Networks (SNNs) are inspired by the sparse and event-driven nature of biological neural processing, and offer the potential for ultra-low-power artificial intelligence.
We explore the hardware-software co-design of sparse SNNs, examining how sparsity representation, hardware architectures, and training techniques influence hardware efficiency.
Our work aims to illuminate the path towards embedded neuromorphic systems that fully exploit the computational advantages of sparse SNNs.
arXiv Detail & Related papers (2024-08-26T17:22:11Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Energy-Efficient Deployment of Machine Learning Workloads on
Neuromorphic Hardware [0.11744028458220425]
Several edge deep learning hardware accelerators have been released that specifically focus on reducing the power and area consumed by deep neural networks (DNNs)
Spiked neural networks (SNNs) which operate on discrete time-series data have been shown to achieve substantial power reductions when deployed on specialized neuromorphic event-based/asynchronous hardware.
In this work, we provide a general guide to converting pre-trained DNNs into SNNs while also presenting techniques to improve the deployment of converted SNNs on neuromorphic hardware.
arXiv Detail & Related papers (2022-10-10T20:27:19Z) - A Resource-efficient Spiking Neural Network Accelerator Supporting
Emerging Neural Encoding [6.047137174639418]
Spiking neural networks (SNNs) recently gained momentum due to their low-power multiplication-free computing.
SNNs require very long spike trains (up to 1000) to reach an accuracy similar to their artificial neural network (ANN) counterparts for large models.
We present a novel hardware architecture that can efficiently support SNN with emerging neural encoding.
arXiv Detail & Related papers (2022-06-06T10:56:25Z) - Object Detection with Spiking Neural Networks on Automotive Event Data [0.0]
We propose to train spiking neural networks (SNNs) directly on data coming from event cameras to design fast and efficient automotive embedded applications.
In this paper, we conducted experiments on two automotive event datasets, establishing new state-of-the-art classification results for spiking neural networks.
arXiv Detail & Related papers (2022-05-09T14:39:47Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Learning from Event Cameras with Sparse Spiking Convolutional Neural
Networks [0.0]
Convolutional neural networks (CNNs) are now the de facto solution for computer vision problems.
We propose an end-to-end biologically inspired approach using event cameras and spiking neural networks (SNNs)
Our method enables the training of sparse spiking neural networks directly on event data, using the popular deep learning framework PyTorch.
arXiv Detail & Related papers (2021-04-26T13:52:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.