Learning from Event Cameras with Sparse Spiking Convolutional Neural
Networks
- URL: http://arxiv.org/abs/2104.12579v1
- Date: Mon, 26 Apr 2021 13:52:01 GMT
- Title: Learning from Event Cameras with Sparse Spiking Convolutional Neural
Networks
- Authors: Lo\"ic Cordone, Beno\^it Miramond and Sonia Ferrante
- Abstract summary: Convolutional neural networks (CNNs) are now the de facto solution for computer vision problems.
We propose an end-to-end biologically inspired approach using event cameras and spiking neural networks (SNNs)
Our method enables the training of sparse spiking neural networks directly on event data, using the popular deep learning framework PyTorch.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Convolutional neural networks (CNNs) are now the de facto solution for
computer vision problems thanks to their impressive results and ease of
learning. These networks are composed of layers of connected units called
artificial neurons, loosely modeling the neurons in a biological brain.
However, their implementation on conventional hardware (CPU/GPU) results in
high power consumption, making their integration on embedded systems difficult.
In a car for example, embedded algorithms have very high constraints in term of
energy, latency and accuracy. To design more efficient computer vision
algorithms, we propose to follow an end-to-end biologically inspired approach
using event cameras and spiking neural networks (SNNs). Event cameras output
asynchronous and sparse events, providing an incredibly efficient data source,
but processing these events with synchronous and dense algorithms such as CNNs
does not yield any significant benefits. To address this limitation, we use
spiking neural networks (SNNs), which are more biologically realistic neural
networks where units communicate using discrete spikes. Due to the nature of
their operations, they are hardware friendly and energy-efficient, but training
them still remains a challenge. Our method enables the training of sparse
spiking convolutional neural networks directly on event data, using the popular
deep learning framework PyTorch. The performances in terms of accuracy,
sparsity and training time on the popular DVS128 Gesture Dataset make it
possible to use this bio-inspired approach for the future embedding of
real-time applications on low-power neuromorphic hardware.
Related papers
- Detection of Fast-Moving Objects with Neuromorphic Hardware [12.323012135924374]
Spiking Neural Networks (SNNs) are often viewed as the next generation of Neural Networks (NNs)
Neuromorphic Computing (NC) and SNNs in particular are often viewed as the next generation of Neural Networks (NNs)
arXiv Detail & Related papers (2024-03-15T20:53:10Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Object Detection with Spiking Neural Networks on Automotive Event Data [0.0]
We propose to train spiking neural networks (SNNs) directly on data coming from event cameras to design fast and efficient automotive embedded applications.
In this paper, we conducted experiments on two automotive event datasets, establishing new state-of-the-art classification results for spiking neural networks.
arXiv Detail & Related papers (2022-05-09T14:39:47Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - SpikeMS: Deep Spiking Neural Network for Motion Segmentation [7.491944503744111]
textitSpikeMS is the first deep encoder-decoder SNN architecture for the real-world large-scale problem of motion segmentation.
We show that textitSpikeMS is capable of textitincremental predictions, or predictions from smaller amounts of test data than it is trained on.
arXiv Detail & Related papers (2021-05-13T21:34:55Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
Differentiable neural computers extend artificial neural networks with an explicit memory without interference.
We achieve some of the computational capabilities of differentiable neural computers with a model that can be trained very efficiently.
arXiv Detail & Related papers (2020-09-14T12:01:30Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces.
We train and validate our approach directly on the Intel NNP-I chip for inference.
We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.
arXiv Detail & Related papers (2020-07-14T18:50:12Z) - Lossless Compression of Deep Neural Networks [17.753357839478575]
Deep neural networks have been successful in many predictive modeling tasks, such as image and language recognition.
It is challenging to deploy these networks under limited computational resources, such as in mobile devices.
We introduce an algorithm that removes units and layers of a neural network while not changing the output that is produced.
arXiv Detail & Related papers (2020-01-01T15:04:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.