Catoni Contextual Bandits are Robust to Heavy-tailed Rewards
- URL: http://arxiv.org/abs/2502.02486v1
- Date: Tue, 04 Feb 2025 17:03:32 GMT
- Title: Catoni Contextual Bandits are Robust to Heavy-tailed Rewards
- Authors: Chenlu Ye, Yujia Jin, Alekh Agarwal, Tong Zhang,
- Abstract summary: We develop an algorithmic approach building on Catoni's estimator from robust statistics.
We establish a regret bound that depends only on the cumulative reward variance and logarithmically on the reward range $R$.
Our algorithm also enjoys a variance-based bound with logarithmic reward-range dependence.
- Score: 31.381627608971414
- License:
- Abstract: Typical contextual bandit algorithms assume that the rewards at each round lie in some fixed range $[0, R]$, and their regret scales polynomially with this reward range $R$. However, many practical scenarios naturally involve heavy-tailed rewards or rewards where the worst-case range can be substantially larger than the variance. In this paper, we develop an algorithmic approach building on Catoni's estimator from robust statistics, and apply it to contextual bandits with general function approximation. When the variance of the reward at each round is known, we use a variance-weighted regression approach and establish a regret bound that depends only on the cumulative reward variance and logarithmically on the reward range $R$ as well as the number of rounds $T$. For the unknown-variance case, we further propose a careful peeling-based algorithm and remove the need for cumbersome variance estimation. With additional dependence on the fourth moment, our algorithm also enjoys a variance-based bound with logarithmic reward-range dependence. Moreover, we demonstrate the optimality of the leading-order term in our regret bound through a matching lower bound.
Related papers
- An Adaptive Approach for Infinitely Many-armed Bandits under Generalized Rotting Constraints [29.596684377841182]
In this study, we consider the infinitely many-armed bandit problems in a rested rotting setting, where the mean reward of an arm may decrease with each pull, while otherwise, it remains unchanged.
We introduce an algorithm that utilizes UCB with an adaptive sliding window, designed to manage the bias and variance trade-off arising due to rotting rewards.
arXiv Detail & Related papers (2024-04-22T14:11:54Z) - Variance-Dependent Regret Bounds for Non-stationary Linear Bandits [52.872628573907434]
We propose algorithms that utilize the variance of the reward distribution as well as the $B_K$, and show that they can achieve tighter regret upper bounds.
We introduce two novel algorithms: Restarted Weighted$textOFUL+$ and Restarted $textSAVE+$.
Notably, when the total variance $V_K$ is much smaller than $K$, our algorithms outperform previous state-of-the-art results on non-stationary linear bandits under different settings.
arXiv Detail & Related papers (2024-03-15T23:36:55Z) - Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits [53.281230333364505]
This paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM)
We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $tilde Obig(dsqrtsum_t=1Tsigma_t2 + dbig)$.
Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $tilde O(d)$ regret.
arXiv Detail & Related papers (2023-10-02T08:15:52Z) - Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement
Learning: Adaptivity and Computational Efficiency [90.40062452292091]
We present the first computationally efficient algorithm for linear bandits with heteroscedastic noise.
Our algorithm is adaptive to the unknown variance of noise and achieves an $tildeO(d sqrtsum_k = 1K sigma_k2 + d)$ regret.
We also propose a variance-adaptive algorithm for linear mixture Markov decision processes (MDPs) in reinforcement learning.
arXiv Detail & Related papers (2023-02-21T00:17:24Z) - A New Look at Dynamic Regret for Non-Stationary Stochastic Bandits [11.918230810566945]
We study the non-stationary multi-armed bandit problem, where the reward statistics of each arm may change several times during the course of learning.
We propose a method that achieves, in $K$-armed bandit problems, a near-optimal $widetilde O(sqrtK N(S+1))$ dynamic regret.
arXiv Detail & Related papers (2022-01-17T17:23:56Z) - Top $K$ Ranking for Multi-Armed Bandit with Noisy Evaluations [102.32996053572144]
We consider a multi-armed bandit setting where, at the beginning of each round, the learner receives noisy independent evaluations of the true reward of each arm.
We derive different algorithmic approaches and theoretical guarantees depending on how the evaluations are generated.
arXiv Detail & Related papers (2021-12-13T09:48:54Z) - Linear Contextual Bandits with Adversarial Corruptions [91.38793800392108]
We study the linear contextual bandit problem in the presence of adversarial corruption.
We present a variance-aware algorithm that is adaptive to the level of adversarial contamination $C$.
arXiv Detail & Related papers (2021-10-25T02:53:24Z) - Stochastic Linear Bandits Robust to Adversarial Attacks [117.665995707568]
We provide two variants of a Robust Phased Elimination algorithm, one that knows $C$ and one that does not.
We show that both variants attain near-optimal regret in the non-corrupted case $C = 0$, while incurring additional additive terms respectively.
In a contextual setting, we show that a simple greedy algorithm is provably robust with a near-optimal additive regret term, despite performing no explicit exploration and not knowing $C$.
arXiv Detail & Related papers (2020-07-07T09:00:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.