論文の概要: The Impact Of Bug Localization Based on Crash Report Mining: A Developers' Perspective
- arxiv url: http://arxiv.org/abs/2403.10753v1
- Date: Sat, 16 Mar 2024 01:23:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 22:04:53.125524
- Title: The Impact Of Bug Localization Based on Crash Report Mining: A Developers' Perspective
- Title(参考訳): クラッシュレポートマイニングに基づくバグローカライゼーションの影響:開発者の視点
- Authors: Marcos Medeiros, Uirá Kulesza, Roberta Coelho, Rodrigo Bonifácio, Christoph Treude, Eiji Adachi,
- Abstract要約: 事故報告をグループ化し,バグコードを見つけるためのアプローチを18ヶ月にわたって毎週実施した経験を報告する。
この調査で調査されたアプローチは、バギーファイルの大部分を正しく示唆していた。
- 参考スコア(独自算出の注目度): 7.952391285456257
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Developers often use crash reports to understand the root cause of bugs. However, locating the buggy source code snippet from such information is a challenging task, mainly when the log database contains many crash reports. To mitigate this issue, recent research has proposed and evaluated approaches for grouping crash report data and using stack trace information to locate bugs. The effectiveness of such approaches has been evaluated by mainly comparing the candidate buggy code snippets with the actual changed code in bug-fix commits -- which happens in the context of retrospective repository mining studies. Therefore, the existing literature still lacks discussing the use of such approaches in the daily life of a software company, which could explain the developers' perceptions on the use of these approaches. In this paper, we report our experience of using an approach for grouping crash reports and finding buggy code on a weekly basis for 18 months, within three development teams in a software company. We grouped over 750,000 crash reports, opened over 130 issues, and collected feedback from 18 developers and team leaders. Among other results, we observe that the amount of system logs related to a crash report group is not the only criteria developers use to choose a candidate bug to be analyzed. Instead, other factors were considered, such as the need to deliver customer-prioritized features and the difficulty of solving complex crash reports (e.g., architectural debts), to cite some. The approach investigated in this study correctly suggested the buggy file most of the time -- the approach's precision was around 80%. In this study, the developers also shared their perspectives on the usefulness of the suspicious files and methods extracted from crash reports to fix related bugs.
- Abstract(参考訳): 開発者はしばしば、バグの根本原因を理解するためにクラッシュレポートを使う。
しかし、ログデータベースに多くのクラッシュレポートがある場合、このような情報からバグの多いソースコードスニペットを見つけることは難しい作業である。
この問題を軽減するため,最近の研究では,クラッシュレポートデータのグループ化とスタックトレース情報によるバグ発見のためのアプローチを提案し,評価している。
このようなアプローチの有効性は、主にバグ修正コミットの実際の変更コードと比較することで評価されている。
したがって、既存の文献では、ソフトウェア企業の日々の生活におけるそのようなアプローチの使用についての議論がまだ欠けているため、これらのアプローチの使用に対する開発者の認識が説明できる。
本稿では,ソフトウェア企業の3つの開発チームにおいて,クラッシュレポートをグループ化し,バグのあるコードを毎週18ヶ月にわたって発見するためのアプローチを用いた経験を報告する。
私たちは75万以上のクラッシュレポートをグループ化し、130のイシューを開き、18人の開発者とチームのリーダからフィードバックを集めました。
その結果、クラッシュ報告グループに関連するシステムログの量は、開発者が分析対象のバグを選択するのに使用する基準ではないことがわかった。
代わりに、顧客優先の機能の提供の必要性、複雑なクラッシュレポート(アーキテクチャ上の負債など)の解決が難しいことなど、他の要因も検討された。
この調査で調査されたアプローチは、バギーファイルの大部分を正しく示唆していた。
本研究では,事故報告から抽出した不審なファイルや方法の有用性について,開発者が自身の見解を公開し,関連するバグを修正した。
関連論文リスト
- KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution [59.20933707301566]
大規模言語モデル(LLM)は、ますます現実的なソフトウェア工学(SE)タスクにおいて一貫して改善されている。
現実世界のソフトウェアスタックでは、Linuxカーネルのような基本的なシステムソフトウェアの開発にSEの取り組みが費やされています。
このような大規模システムレベルのソフトウェアを開発する際にMLモデルが有用かどうかを評価するため、kGymとkBenchを紹介する。
論文 参考訳(メタデータ) (2024-07-02T21:44:22Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench - LLM(Large Language Models)のベンチマーク。
C++、Java、Pythonの4つの主要なバグカテゴリと18のマイナータイプをカバーする。
ゼロショットシナリオで2つの商用および4つのオープンソースモデルを評価する。
論文 参考訳(メタデータ) (2024-01-09T15:46:38Z) - Toward Rapid Bug Resolution for Android Apps [0.4759142872591625]
本稿では,既存のバグレポートの限界について述べるとともに,それに対応するための潜在的戦略を明らかにする。
私たちのビジョンは、これらの制限の緩和と、提案された新しい研究の方向性の実行が、レポーターと開発者の両方に利益をもたらす、未来を包含しています。
論文 参考訳(メタデータ) (2023-12-23T18:29:06Z) - On Using GUI Interaction Data to Improve Text Retrieval-based Bug
Localization [10.717184444794505]
エンドユーザー向けアプリケーションでは、バグレポート内の情報とGUIの情報とを結びつけることにより、既存のバグローカライゼーション技術を改善することができるという仮説を考察する。
当社は,Androidアプリの完全ローカライズおよび再現可能な真のバグに関する現在の最大のデータセットを,対応するバグレポートとともに公開しています。
論文 参考訳(メタデータ) (2023-10-12T07:14:22Z) - Recommending Bug Assignment Approaches for Individual Bug Reports: An
Empirical Investigation [8.186068333538893]
バグレポートに対処できる潜在的な開発者を自動的に推薦する複数のアプローチが提案されている。
これらのアプローチは一般的に、あらゆるソフトウェアプロジェクトに提出されたバグレポートに対して機能するように設計されています。
2つのオープンソースシステムから2,249件のバグレポートに適用した3つのバグ割り当て手法を用いて,この推測を検証する実験的検討を行った。
論文 参考訳(メタデータ) (2023-05-29T23:02:56Z) - Auto-labelling of Bug Report using Natural Language Processing [0.0]
ルールとクエリベースのソリューションは、明確なランキングのない、潜在的な類似バグレポートの長いリストを推奨します。
本論文では,NLP手法の組み合わせによる解を提案する。
カスタムデータトランスフォーマー、ディープニューラルネットワーク、および非汎用機械学習メソッドを使用して、既存の同一バグレポートを検索する。
論文 参考訳(メタデータ) (2022-12-13T02:32:42Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
我々は,タスク実行前に利用可能であり,また自然発生しているバグレポートの議論を,開発者による追加情報の必要性を回避して利用することを提案する。
このような議論から派生したさまざまな自然言語コンテキストがバグ修正に役立ち、オラクルのバグ修正コミットに対応するコミットメッセージの使用よりもパフォーマンスの向上につながることを実証する。
論文 参考訳(メタデータ) (2022-11-11T16:37:33Z) - Early Detection of Security-Relevant Bug Reports using Machine Learning:
How Far Are We? [6.438136820117887]
典型的なメンテナンスシナリオでは、セキュリティ関連バグレポートは、修正パッチを作成する際に開発チームによって優先される。
オープンなセキュリティ関連バグレポートは、攻撃者がゼロデイ攻撃を実行するために活用できる機密情報の重大な漏洩になる可能性がある。
近年,機械学習に基づくセキュリティ関連バグレポートの検出手法が,有望な性能で報告されている。
論文 参考訳(メタデータ) (2021-12-19T11:30:29Z) - S3M: Siamese Stack (Trace) Similarity Measure [55.58269472099399]
本稿では、深層学習に基づくスタックトレースの類似性を計算する最初のアプローチであるS3Mを紹介します。
BiLSTMエンコーダと、類似性を計算するための完全接続型分類器をベースとしている。
私たちの実験は、オープンソースデータとプライベートなJetBrainsデータセットの両方において、最先端のアプローチの優位性を示しています。
論文 参考訳(メタデータ) (2021-03-18T21:10:41Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
クラウドのような大規模コンピュータシステムにおける異常や障害は、多くのユーザに影響を与える。
システム情報の主要なトラブルシューティングソースとして,ログデータの異常検出のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-23T09:17:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。