ODE Discovery for Longitudinal Heterogeneous Treatment Effects Inference
- URL: http://arxiv.org/abs/2403.10766v1
- Date: Sat, 16 Mar 2024 02:07:45 GMT
- Title: ODE Discovery for Longitudinal Heterogeneous Treatment Effects Inference
- Authors: Krzysztof Kacprzyk, Samuel Holt, Jeroen Berrevoets, Zhaozhi Qian, Mihaela van der Schaar,
- Abstract summary: In this paper, we introduce a new type of solution in the longitudinal setting: a closed-form ordinary differential equation (ODE)
While we still rely on continuous optimization to learn an ODE, the resulting inference machine is no longer a neural network.
- Score: 69.24516189971929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inferring unbiased treatment effects has received widespread attention in the machine learning community. In recent years, our community has proposed numerous solutions in standard settings, high-dimensional treatment settings, and even longitudinal settings. While very diverse, the solution has mostly relied on neural networks for inference and simultaneous correction of assignment bias. New approaches typically build on top of previous approaches by proposing new (or refined) architectures and learning algorithms. However, the end result -- a neural-network-based inference machine -- remains unchallenged. In this paper, we introduce a different type of solution in the longitudinal setting: a closed-form ordinary differential equation (ODE). While we still rely on continuous optimization to learn an ODE, the resulting inference machine is no longer a neural network. Doing so yields several advantages such as interpretability, irregular sampling, and a different set of identification assumptions. Above all, we consider the introduction of a completely new type of solution to be our most important contribution as it may spark entirely new innovations in treatment effects in general. We facilitate this by formulating our contribution as a framework that can transform any ODE discovery method into a treatment effects method.
Related papers
- Solutions to Elliptic and Parabolic Problems via Finite Difference Based Unsupervised Small Linear Convolutional Neural Networks [1.124958340749622]
We propose a fully unsupervised approach, requiring no training data, to estimate finite difference solutions for PDEs directly via small linear convolutional neural networks.
Our proposed approach uses substantially fewer parameters than similar finite difference-based approaches while also demonstrating comparable accuracy to the true solution for several selected elliptic and parabolic problems.
arXiv Detail & Related papers (2023-11-01T03:15:10Z) - Experimental study of Neural ODE training with adaptive solver for
dynamical systems modeling [72.84259710412293]
Some ODE solvers called adaptive can adapt their evaluation strategy depending on the complexity of the problem at hand.
This paper describes a simple set of experiments to show why adaptive solvers cannot be seamlessly leveraged as a black-box for dynamical systems modelling.
arXiv Detail & Related papers (2022-11-13T17:48:04Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Imbedding Deep Neural Networks [0.0]
Continuous depth neural networks, such as Neural ODEs, have refashioned the understanding of residual neural networks in terms of non-linear vector-valued optimal control problems.
We propose a new approach which explicates the network's depth' as a fundamental variable, thus reducing the problem to a system of forward-facing initial value problems.
arXiv Detail & Related papers (2022-01-31T22:00:41Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Computational characteristics of feedforward neural networks for solving
a stiff differential equation [0.0]
We study the solution of a simple but fundamental stiff ordinary differential equation modelling a damped system.
We show that it is possible to identify preferable choices to be made for parameters and methods.
Overall we extend the current literature in the field by showing what can be done in order to obtain reliable and accurate results by the neural network approach.
arXiv Detail & Related papers (2020-12-03T12:22:24Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
We propose a theoretically-grounded method based on neural networks that can leverage interventional data.
We show that our approach compares favorably to the state of the art in a variety of settings.
arXiv Detail & Related papers (2020-07-03T15:19:17Z) - ODEN: A Framework to Solve Ordinary Differential Equations using
Artificial Neural Networks [0.0]
We prove a specific loss function, which does not require knowledge of the exact solution, to evaluate neural networks' performance.
Neural networks are shown to be proficient at approximating continuous solutions within their training domains.
A user-friendly and adaptable open-source code (ODE$mathcalN$) is provided on GitHub.
arXiv Detail & Related papers (2020-05-28T15:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.