Adversarial Knapsack and Secondary Effects of Common Information for Cyber Operations
- URL: http://arxiv.org/abs/2403.10789v1
- Date: Sat, 16 Mar 2024 03:41:12 GMT
- Title: Adversarial Knapsack and Secondary Effects of Common Information for Cyber Operations
- Authors: Jon Goohs, Georgel Savin, Lucas Starks, Josiah Dykstra, William Casey,
- Abstract summary: We formalize a dynamical network control game for Capture the Flag (CTF) competitions and detail the static game for each time step.
We define the Adversarial Knapsack optimization problems as a system of interacting Weighted Knapsack problems.
Common awareness of the scenario, rewards, and costs will set the stage for a non-cooperative game.
- Score: 0.9378911615939924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variations of the Flip-It game have been applied to model network cyber operations. While Flip-It can accurately express uncertainty and loss of control, it imposes no essential resource constraints for operations. Capture the flag (CTF) style competitive games, such as Flip-It , entail uncertainties and loss of control, but also impose realistic constraints on resource use. As such, they bear a closer resemblance to actual cyber operations. We formalize a dynamical network control game for CTF competitions and detail the static game for each time step. The static game can be reformulated as instances of a novel optimization problem called Adversarial Knapsack (AK) or Dueling Knapsack (DK) when there are only two players. We define the Adversarial Knapsack optimization problems as a system of interacting Weighted Knapsack problems, and illustrate its applications to general scenarios involving multiple agents with conflicting optimization goals, e.g., cyber operations and CTF games in particular. Common awareness of the scenario, rewards, and costs will set the stage for a non-cooperative game. Critically, rational players may second guess that their AK solution -- with a better response and higher reward -- is possible if opponents predictably play their AK optimal solutions. Thus, secondary reasoning which such as belief modeling of opponents play can be anticipated for rational players and will introduce a type of non-stability where players maneuver for slight reward differentials. To analyze this, we provide the best-response algorithms and simulation software to consider how rational agents may heuristically search for maneuvers. We further summarize insights offered by the game model by predicting that metrics such as Common Vulnerability Scoring System (CVSS) may intensify the secondary reasoning in cyber operations.
Related papers
- Data-Scarce Identification of Game Dynamics via Sum-of-Squares Optimization [29.568222003322344]
We introduce the Side-Information Assisted Regression (SIAR) framework, designed to identify game dynamics in multiplayer normal-form games.
SIAR is solved using sum-of-squares (SOS) optimization, resulting in a hierarchy of approximations that provably converge to the true dynamics of the system.
We showcase that the SIAR framework accurately predicts player behavior across a spectrum of normal-form games, widely-known families of game dynamics, and strong benchmarks, even if the unknown system is chaotic.
arXiv Detail & Related papers (2023-07-13T09:14:48Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
We study the problem of computing an approximate Nash equilibrium of continuous-action game without access to gradients.
We model players' strategies using artificial neural networks.
This paper is the first to solve general continuous-action games with unrestricted mixed strategies and without any gradient information.
arXiv Detail & Related papers (2022-11-29T05:16:41Z) - Provably Efficient Fictitious Play Policy Optimization for Zero-Sum
Markov Games with Structured Transitions [145.54544979467872]
We propose and analyze new fictitious play policy optimization algorithms for zero-sum Markov games with structured but unknown transitions.
We prove tight $widetildemathcalO(sqrtK)$ regret bounds after $K$ episodes in a two-agent competitive game scenario.
Our algorithms feature a combination of Upper Confidence Bound (UCB)-type optimism and fictitious play under the scope of simultaneous policy optimization.
arXiv Detail & Related papers (2022-07-25T18:29:16Z) - Adversarial Online Learning with Variable Plays in the Pursuit-Evasion
Game: Theoretical Foundations and Application in Connected and Automated
Vehicle Cybersecurity [5.9774834479750805]
We extend the adversarial/non-stochastic multi-play multi-armed bandit (MPMAB) to the case where the number of arms to play is variable.
The work is motivated by the fact that the resources allocated to scan different critical locations in an interconnected transportation system change dynamically over time and depending on the environment.
arXiv Detail & Related papers (2021-10-26T23:09:42Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
We provide a unified framework for learning and intervention in games.
We propose two approaches, respectively based on explicit and implicit differentiation.
The analytical results are validated using several real-world problems.
arXiv Detail & Related papers (2020-10-26T18:39:32Z) - Visibility Optimization for Surveillance-Evasion Games [4.454557728745761]
We consider surveillance-evasion differential games, where a pursuer must try to constantly maintain visibility of a moving evader.
We use an upwind scheme to compute the feedback value function, corresponding to the end-game time of the differential game.
We show that Monte Carlo tree search and self-play reinforcement learning can train a deep neural network to generate reasonable strategies for on-line game play.
arXiv Detail & Related papers (2020-10-18T15:02:41Z) - Complexity and Algorithms for Exploiting Quantal Opponents in Large
Two-Player Games [16.43565579998679]
Solution concepts of traditional game theory assume entirely rational players; therefore, their ability to exploit subrational opponents is limited.
This paper aims to analyze and propose scalable algorithms for computing effective and robust strategies against a quantal opponent in normal-form and extensive-form games.
arXiv Detail & Related papers (2020-09-30T09:14:56Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
We investigate the increasingly important and common game-solving setting where we do not have an explicit description of the game but only oracle access to it through gameplay.
During a limited-duration learning phase, the algorithm can control the actions of both players in order to try to learn the game and how to play it well.
Our motivation is to quickly learn strategies that have low exploitability in situations where evaluating the payoffs of a queried strategy profile is costly.
arXiv Detail & Related papers (2020-02-24T20:30:38Z) - Signaling in Bayesian Network Congestion Games: the Subtle Power of
Symmetry [66.82463322411614]
The paper focuses on the problem of optimal ex ante persuasive signaling schemes, showing that symmetry is a crucial property for its solution.
We show that an optimal ex ante persuasive scheme can be computed in time when players are symmetric and have affine cost functions.
arXiv Detail & Related papers (2020-02-12T19:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.