Data-Scarce Identification of Game Dynamics via Sum-of-Squares Optimization
- URL: http://arxiv.org/abs/2307.06640v2
- Date: Fri, 11 Oct 2024 04:53:16 GMT
- Title: Data-Scarce Identification of Game Dynamics via Sum-of-Squares Optimization
- Authors: Iosif Sakos, Antonios Varvitsiotis, Georgios Piliouras,
- Abstract summary: We introduce the Side-Information Assisted Regression (SIAR) framework, designed to identify game dynamics in multiplayer normal-form games.
SIAR is solved using sum-of-squares (SOS) optimization, resulting in a hierarchy of approximations that provably converge to the true dynamics of the system.
We showcase that the SIAR framework accurately predicts player behavior across a spectrum of normal-form games, widely-known families of game dynamics, and strong benchmarks, even if the unknown system is chaotic.
- Score: 29.568222003322344
- License:
- Abstract: Understanding how players adjust their strategies in games, based on their experience, is a crucial tool for policymakers. It enables them to forecast the system's eventual behavior, exert control over the system, and evaluate counterfactual scenarios. The task becomes increasingly difficult when only a limited number of observations are available or difficult to acquire. In this work, we introduce the Side-Information Assisted Regression (SIAR) framework, designed to identify game dynamics in multiplayer normal-form games only using data from a short run of a single system trajectory. To enhance system recovery in the face of scarce data, we integrate side-information constraints into SIAR, which restrict the set of feasible solutions to those satisfying game-theoretic properties and common assumptions about strategic interactions. SIAR is solved using sum-of-squares (SOS) optimization, resulting in a hierarchy of approximations that provably converge to the true dynamics of the system. We showcase that the SIAR framework accurately predicts player behavior across a spectrum of normal-form games, widely-known families of game dynamics, and strong benchmarks, even if the unknown system is chaotic.
Related papers
- Scalable Offline Reinforcement Learning for Mean Field Games [6.8267158622784745]
Off-MMD is a novel mean-field RL algorithm that approximates equilibrium policies in mean-field games using purely offline data.
Our algorithm scales to complex environments and demonstrates strong performance on benchmark tasks like crowd exploration or navigation.
arXiv Detail & Related papers (2024-10-23T14:16:34Z) - Adversarial Knapsack and Secondary Effects of Common Information for Cyber Operations [0.9378911615939924]
We formalize a dynamical network control game for Capture the Flag (CTF) competitions and detail the static game for each time step.
We define the Adversarial Knapsack optimization problems as a system of interacting Weighted Knapsack problems.
Common awareness of the scenario, rewards, and costs will set the stage for a non-cooperative game.
arXiv Detail & Related papers (2024-03-16T03:41:12Z) - Blending Data-Driven Priors in Dynamic Games [9.085463548798366]
We formulate an algorithm for solving non-cooperative dynamic game with Kullback-Leibler (KL) regularization.
We propose an efficient algorithm for computing multi-modal approximate feedback Nash equilibrium strategies of KLGame in real time.
arXiv Detail & Related papers (2024-02-21T23:22:32Z) - Auto-Encoding Bayesian Inverse Games [36.06617326128679]
We consider the inverse game problem, in which some properties of the game are unknown a priori.
Existing maximum likelihood estimation approaches to solve inverse games provide only point estimates of unknown parameters.
We take a Bayesian perspective and construct posterior distributions of game parameters.
This structured VAE can be trained from an unlabeled dataset of observed interactions.
arXiv Detail & Related papers (2024-02-14T02:17:37Z) - On the Convergence of No-Regret Learning Dynamics in Time-Varying Games [89.96815099996132]
We characterize the convergence of optimistic gradient descent (OGD) in time-varying games.
Our framework yields sharp convergence bounds for the equilibrium gap of OGD in zero-sum games.
We also provide new insights on dynamic regret guarantees in static games.
arXiv Detail & Related papers (2023-01-26T17:25:45Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
We study the problem of computing an approximate Nash equilibrium of continuous-action game without access to gradients.
We model players' strategies using artificial neural networks.
This paper is the first to solve general continuous-action games with unrestricted mixed strategies and without any gradient information.
arXiv Detail & Related papers (2022-11-29T05:16:41Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
Turn-based strategy games like Roguelikes, for example, present unique challenges to Deep Reinforcement Learning (DRL)
We propose two network architectures to better handle complex categorical state spaces and to mitigate the need for retraining forced by design decisions.
arXiv Detail & Related papers (2020-12-07T08:47:25Z) - No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium [76.78447814623665]
We give the first uncoupled no-regret dynamics that converge to correlated equilibria in normal-form games.
We introduce a notion of trigger regret in extensive-form games, which extends that of internal regret in normal-form games.
Our algorithm decomposes trigger regret into local subproblems at each decision point for the player, and constructs a global strategy of the player from the local solutions.
arXiv Detail & Related papers (2020-04-01T17:39:00Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
We investigate the increasingly important and common game-solving setting where we do not have an explicit description of the game but only oracle access to it through gameplay.
During a limited-duration learning phase, the algorithm can control the actions of both players in order to try to learn the game and how to play it well.
Our motivation is to quickly learn strategies that have low exploitability in situations where evaluating the payoffs of a queried strategy profile is costly.
arXiv Detail & Related papers (2020-02-24T20:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.