論文の概要: Efficient Domain Adaptation for Endoscopic Visual Odometry
- arxiv url: http://arxiv.org/abs/2403.10860v1
- Date: Sat, 16 Mar 2024 08:57:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 21:25:31.274758
- Title: Efficient Domain Adaptation for Endoscopic Visual Odometry
- Title(参考訳): 内視鏡的視力計測のための高能率領域適応法
- Authors: Junyang Wu, Yun Gu, Guang-Zhong Yang,
- Abstract要約: ドメイン適応は,術前計画領域を術中実領域にブリッジして眼科情報を学習する,有望なアプローチを提供する。
本研究では,術前計画からテスト段階までの時間を5分未満に圧縮する,内視鏡的視覚計測のための効率的なニューラルスタイル転送フレームワークを提案する。
- 参考スコア(独自算出の注目度): 28.802915155343964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual odometry plays a crucial role in endoscopic imaging, yet the scarcity of realistic images with ground truth poses poses a significant challenge. Therefore, domain adaptation offers a promising approach to bridge the pre-operative planning domain with the intra-operative real domain for learning odometry information. However, existing methodologies suffer from inefficiencies in the training time. In this work, an efficient neural style transfer framework for endoscopic visual odometry is proposed, which compresses the time from pre-operative planning to testing phase to less than five minutes. For efficient traing, this work focuses on training modules with only a limited number of real images and we exploit pre-operative prior information to dramatically reduce training duration. Moreover, during the testing phase, we propose a novel Test Time Adaptation (TTA) method to mitigate the gap in lighting conditions between training and testing datasets. Experimental evaluations conducted on two public endoscope datasets showcase that our method achieves state-of-the-art accuracy in visual odometry tasks while boasting the fastest training speeds. These results demonstrate significant promise for intra-operative surgery applications.
- Abstract(参考訳): 視力計測は内視鏡撮影において重要な役割を担っているが、地上の真実のポーズを伴う現実的なイメージの不足は重要な課題である。
そのため、ドメイン適応は、術前計画領域を術中実領域にブリッジして、眼科情報を学習するための有望なアプローチを提供する。
しかし、既存の手法は訓練時間の非効率さに悩まされている。
本研究では,術前計画からテスト段階までの時間を5分未満に圧縮する,内視鏡的視覚計測のための効率的なニューラルスタイル転送フレームワークを提案する。
本研究は,実画像の限られた数しか持たないトレーニングモジュールに焦点をあて,トレーニング期間を劇的に短縮するために術前情報を活用する。
さらに,テストフェーズにおいて,トレーニングとテストデータセット間の照明条件のギャップを軽減するために,新しいテスト時間適応(TTA)手法を提案する。
2つの公開内視鏡データセットを用いて実験を行った結果,本手法は視力計測タスクにおける最先端の精度を達成し,最速のトレーニング速度を誇示することがわかった。
これらの結果から術中手術に有意な期待が得られた。
関連論文リスト
- Data-Centric Learning Framework for Real-Time Detection of Aiming Beam in Fluorescence Lifetime Imaging Guided Surgery [3.8261910636994925]
本研究では,FLImを用いたリアルタイム手術指導のための新しいデータ中心アプローチを提案する。
第一の課題は,特に経口ロボット手術(TORS)における手術環境における複雑で変動的な状態から生じる。
ラベルノイズの最小化と検出ロバスト性の向上により精度を向上させるデータ中心のトレーニング戦略を用いて,インスタンスセグメンテーションモデルを開発した。
論文 参考訳(メタデータ) (2024-11-11T22:04:32Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Transferring Relative Monocular Depth to Surgical Vision with Temporal Consistency [3.585363618435449]
相対的な単分子深度は、1つの画像からシフトとスケールの深さを推定するものであり、活発な研究トピックである。
大規模で多様なメタデータセットに基づいて訓練された最近のディープラーニングモデルは、自然画像の領域で優れたパフォーマンスを提供する。
内視鏡画像に真実の深さを与えるデータセットはほとんど存在せず、そのようなモデルをスクラッチからトレーニングすることは不可能である。
論文 参考訳(メタデータ) (2024-03-11T12:57:51Z) - Efficient Deformable Tissue Reconstruction via Orthogonal Neural Plane [58.871015937204255]
変形性組織を再建するための高速直交平面(Fast Orthogonal Plane)を導入する。
我々は外科手術を4Dボリュームとして概念化し、それらをニューラルネットワークからなる静的および動的フィールドに分解する。
この分解により4次元空間が増加し、メモリ使用量が減少し、最適化が高速化される。
論文 参考訳(メタデータ) (2023-12-23T13:27:50Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
ラベルなしMRIスキャンによる自己教師付き事前学習に基づく新たなディープラーニング学習戦略を提案する。
我々の事前学習アプローチはまず、ラベルのない画像のランダム領域に異なる歪みをランダムに適用し、次に歪みの種類と情報の損失を予測する。
異なる事前学習シナリオと微調整シナリオにおけるセグメンテーション課題に対する提案手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-07-17T13:28:52Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
DLTTAと呼ばれるテスト時間適応のための新しい動的学習率調整法を提案する。
本手法は,現在最先端のテスト時間適応法よりも一貫した性能向上を図り,有効かつ高速なテスト時間適応を実現する。
論文 参考訳(メタデータ) (2022-05-27T02:34:32Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
本稿では,時間的生成的対位ネットワーク(GAN)を用いて,隠蔽解剖学を特異性の下で描くことを提案する。
これは、胃内視鏡(Hyper-Kvasir)の生検データを用いて、完全に教師なしの方法で達成される。
また,3次元再構成とカメラモーション推定の基盤となるコンピュータビジョンタスクにおける本手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-03-31T13:14:00Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
そこで本研究では,深度推定のためのドメイン適応手法を提案する。
提案する2段階構造は,まず,ラベル付き合成画像を用いた深度推定ネットワークを教師付きで訓練する。
実験の結果,提案手法は実画像上でのネットワーク性能をかなりの差で向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-24T08:11:34Z) - Self-Supervised Learning from Unlabeled Fundus Photographs Improves
Segmentation of the Retina [4.815051667870375]
基礎撮影は網膜イメージングの第一の方法であり、糖尿病網膜症予防に必須である。
現在のセグメンテーション法は、実際の臨床応用に典型的な画像条件や病理の多様性に対して堅牢ではない。
コントラスト型自己教師型学習を用いて,EyePACSデータセットの多種多様な未ラベル画像を利用する。
論文 参考訳(メタデータ) (2021-08-05T18:02:56Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
ほとんどのアプリケーションは、高解像度の外科画像の正確なリアルタイムセグメンテーションに依存している。
我々は,高解像度画像のリアルタイム推論を行うために調整された,軽量で高効率なディープ残差アーキテクチャを設計する。
論文 参考訳(メタデータ) (2020-07-08T21:38:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。