stMCDI: Masked Conditional Diffusion Model with Graph Neural Network for Spatial Transcriptomics Data Imputation
- URL: http://arxiv.org/abs/2403.10863v1
- Date: Sat, 16 Mar 2024 09:06:38 GMT
- Title: stMCDI: Masked Conditional Diffusion Model with Graph Neural Network for Spatial Transcriptomics Data Imputation
- Authors: Xiaoyu Li, Wenwen Min, Shunfang Wang, Changmiao Wang, Taosheng Xu,
- Abstract summary: We introduce textbfstMCDI, a novel conditional diffusion model for spatial transcriptomics data imputation.
It employs a denoising network trained using randomly masked data portions as guidance, with the unmasked data serving as conditions.
The results obtained from spatial transcriptomics datasets elucidate the performance of our methods relative to existing approaches.
- Score: 8.211887623977214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatially resolved transcriptomics represents a significant advancement in single-cell analysis by offering both gene expression data and their corresponding physical locations. However, this high degree of spatial resolution entails a drawback, as the resulting spatial transcriptomic data at the cellular level is notably plagued by a high incidence of missing values. Furthermore, most existing imputation methods either overlook the spatial information between spots or compromise the overall gene expression data distribution. To address these challenges, our primary focus is on effectively utilizing the spatial location information within spatial transcriptomic data to impute missing values, while preserving the overall data distribution. We introduce \textbf{stMCDI}, a novel conditional diffusion model for spatial transcriptomics data imputation, which employs a denoising network trained using randomly masked data portions as guidance, with the unmasked data serving as conditions. Additionally, it utilizes a GNN encoder to integrate the spatial position information, thereby enhancing model performance. The results obtained from spatial transcriptomics datasets elucidate the performance of our methods relative to existing approaches.
Related papers
- Distance-Preserving Generative Modeling of Spatial Transcriptomics [0.0]
We introduce a class of distance-preserving generative models for spatial transcriptomics.
We use the provided spatial information to regularize the learned representation space of gene expressions to have a similar pair-wise distance structure.
Our framework grants compatibility with any variational-inference-based generative models for gene expression modeling.
arXiv Detail & Related papers (2024-08-01T21:04:27Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Targeted Analysis of High-Risk States Using an Oriented Variational
Autoencoder [3.494548275937873]
Variational autoencoder (VAE) neural networks can be trained to generate power system states.
The coordinates of the latent space codes of VAEs have been shown to correlate with conceptual features of the data.
In this paper, an oriented variation autoencoder (OVAE) is proposed to constrain the link between latent space code and generated data.
arXiv Detail & Related papers (2023-03-20T19:34:21Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - A Latent Space Correlation-Aware Autoencoder for Anomaly Detection in
Skewed Data [0.0]
We propose a kernelized autoencoder that measures latent dimension correlation to effectively detect both near and far anomalies.
The multi-objective function has two goals -- it measures correlation information in the latent feature space in the form of robust MD distance.
arXiv Detail & Related papers (2023-01-01T19:40:06Z) - Deep Spatial Domain Generalization [8.102110157532556]
We develop the spatial graph neural network that handles spatial data as a graph and learns the spatial embedding on each node.
The proposed method infers the spatial embedding of an unseen location during the test phase and decodes the parameters of the downstream-task model directly on the target location.
arXiv Detail & Related papers (2022-10-03T06:16:20Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces.
We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting.
This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.
arXiv Detail & Related papers (2022-07-20T06:38:36Z) - Cyclic Graph Attentive Match Encoder (CGAME): A Novel Neural Network For
OD Estimation [8.398623478484248]
Origin-Destination Estimation plays an important role in traffic management and traffic simulation in the era of Intelligent Transportation System (ITS)
Previous model-based models face the under-determined challenge, thus desperate demand for additional assumptions and extra data exists.
We propose Cyclic Graph Attentive Matching (C-GAME) based on a novel Graph Matcher with double-layer attention mechanism.
arXiv Detail & Related papers (2021-11-26T08:57:21Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.