Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning
- URL: http://arxiv.org/abs/2210.00226v5
- Date: Sun, 7 Apr 2024 17:57:58 GMT
- Title: Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning
- Authors: Yujun Shi, Jian Liang, Wenqing Zhang, Vincent Y. F. Tan, Song Bai,
- Abstract summary: Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
- Score: 112.69497636932955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning aims to train models collaboratively across different clients without the sharing of data for privacy considerations. However, one major challenge for this learning paradigm is the {\em data heterogeneity} problem, which refers to the discrepancies between the local data distributions among various clients. To tackle this problem, we first study how data heterogeneity affects the representations of the globally aggregated models. Interestingly, we find that heterogeneous data results in the global model suffering from severe {\em dimensional collapse}, in which representations tend to reside in a lower-dimensional space instead of the ambient space. Moreover, we observe a similar phenomenon on models locally trained on each client and deduce that the dimensional collapse on the global model is inherited from local models. In addition, we theoretically analyze the gradient flow dynamics to shed light on how data heterogeneity result in dimensional collapse for local models. To remedy this problem caused by the data heterogeneity, we propose {\sc FedDecorr}, a novel method that can effectively mitigate dimensional collapse in federated learning. Specifically, {\sc FedDecorr} applies a regularization term during local training that encourages different dimensions of representations to be uncorrelated. {\sc FedDecorr}, which is implementation-friendly and computationally-efficient, yields consistent improvements over baselines on standard benchmark datasets. Code: https://github.com/bytedance/FedDecorr.
Related papers
- FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
Federated learning offers a paradigm to the challenge of preserving privacy in distributed machine learning.
Traditional approach fails to address the phenomenon of class-wise bias in global long-tailed data.
New method FedLF introduces three modifications in the local training phase: adaptive logit adjustment, continuous class centred optimization, and feature decorrelation.
arXiv Detail & Related papers (2024-09-18T16:25:29Z) - Federated Impression for Learning with Distributed Heterogeneous Data [19.50235109938016]
Federated learning (FL) provides a paradigm that can learn from distributed datasets across clients without requiring them to share data.
In FL, sub-optimal convergence is common among data from different health centers due to the variety in data collection protocols and patient demographics across centers.
We propose FedImpres which alleviates catastrophic forgetting by restoring synthetic data that represents the global information as federated impression.
arXiv Detail & Related papers (2024-09-11T15:37:52Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Federated Learning of Models Pre-Trained on Different Features with
Consensus Graphs [19.130197923214123]
Learning an effective global model on private and decentralized datasets has become an increasingly important challenge of machine learning.
We propose a feature fusion approach that extracts local representations from local models and incorporates them into a global representation that improves the prediction performance.
This paper presents solutions to these problems and demonstrates them in real-world applications on time series data such as power grids and traffic networks.
arXiv Detail & Related papers (2023-06-02T02:24:27Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Lithography Hotspot Detection via Heterogeneous Federated Learning with
Local Adaptation [24.371305819618467]
We propose a heterogeneous federated learning framework for lithography hotspot detection.
The proposed framework can overcome the challenge of non-independent and identically distributed (non-IID) data.
arXiv Detail & Related papers (2021-07-09T11:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.