論文の概要: Channel-wise Feature Decorrelation for Enhanced Learned Image Compression
- arxiv url: http://arxiv.org/abs/2403.10936v1
- Date: Sat, 16 Mar 2024 14:30:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 20:56:18.187530
- Title: Channel-wise Feature Decorrelation for Enhanced Learned Image Compression
- Title(参考訳): 強調学習画像圧縮のためのチャネルワイド特徴量の補正
- Authors: Farhad Pakdaman, Moncef Gabbouj,
- Abstract要約: 新たなLearnered Compression(LC)は、従来のモジュールをDeep Neural Networks(DNN)に置き換えるものだ。
本稿では,既存のDNN容量をフル活用して圧縮を改善することを提案する。
3つの戦略が提案され,(1)変換ネットワーク,(2)コンテキストモデル,(3)両ネットワークを最適化する。
- 参考スコア(独自算出の注目度): 16.638869231028437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emerging Learned Compression (LC) replaces the traditional codec modules with Deep Neural Networks (DNN), which are trained end-to-end for rate-distortion performance. This approach is considered as the future of image/video compression, and major efforts have been dedicated to improving its compression efficiency. However, most proposed works target compression efficiency by employing more complex DNNS, which contributes to higher computational complexity. Alternatively, this paper proposes to improve compression by fully exploiting the existing DNN capacity. To do so, the latent features are guided to learn a richer and more diverse set of features, which corresponds to better reconstruction. A channel-wise feature decorrelation loss is designed and is integrated into the LC optimization. Three strategies are proposed and evaluated, which optimize (1) the transformation network, (2) the context model, and (3) both networks. Experimental results on two established LC methods show that the proposed method improves the compression with a BD-Rate of up to 8.06%, with no added complexity. The proposed solution can be applied as a plug-and-play solution to optimize any similar LC method.
- Abstract(参考訳): 新たなLearnered Compression(LC)は、従来のコーデックモジュールを、レート歪みのパフォーマンスをエンドツーエンドにトレーニングしたDeep Neural Networks(DNN)に置き換えるものだ。
このアプローチは、画像/ビデオ圧縮の将来と見なされ、圧縮効率の向上に重点が置かれている。
しかし、ほとんどの研究はより複雑なDNNSを用いることで圧縮効率を目標としており、計算複雑性の向上に寄与している。
あるいは,既存のDNN容量をフル活用して圧縮を改善することを提案する。
そのため、潜伏する特徴はよりリッチで多様な機能の集合を学ぶためにガイドされる。
チャネルワイドな特徴デコレーション損失を設計し、LC最適化に統合する。
3つの戦略が提案され,(1)変換ネットワーク,(2)コンテキストモデル,(3)両ネットワークを最適化する。
2つの確立されたLC法の実験結果から,BD-Rateの圧縮は最大8.06%向上し,複雑さは加えられなかった。
提案手法は, 同様のLC法を最適化するために, プラグアンドプレイソリューションとして適用することができる。
関連論文リスト
- Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
本稿では,圧縮ビデオの品質向上の課題に焦点をあてる。
既存の手法のほとんどは、圧縮コーデック内での事前処理を最適に活用するための構造設計を欠いている。
新しいパラダイムは、より意識的な品質向上プロセスのために緊急に必要である。
論文 参考訳(メタデータ) (2024-05-10T09:18:17Z) - Accelerating Distributed Deep Learning using Lossless Homomorphic
Compression [17.654138014999326]
本稿では,ワーカレベルの圧縮とネットワーク内アグリゲーションを効果的に融合する新しい圧縮アルゴリズムを提案する。
集約のスループットが6.33$times$改善され、イテレーションごとのトレーニング速度が3.74$times$アップします。
論文 参考訳(メタデータ) (2024-02-12T09:57:47Z) - Perceptual Learned Image Compression via End-to-End JND-Based
Optimization [15.173265255635219]
Emerging Learned Image Compression (LC)は、圧縮のためのニューラルネットワークのエンドツーエンドトレーニングによって、コーディング効率を大幅に改善する。
HVS(Human Visual System)に準拠したLCの知覚的最適化は、まだ完全には検討されていない。
本稿では,Just Noticeable Distortion(JND)の原則をLCに統合するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T09:45:38Z) - Towards Optimal Compression: Joint Pruning and Quantization [1.191194620421783]
本稿では,FITCompressについて紹介する。FITCompressは層単位での混合精度の量子化と非構造化プルーニングを組み合わせた新しい手法である。
コンピュータビジョンと自然言語処理ベンチマークの実験により,提案手法が優れた圧縮性能のトレードオフを実現することを示す。
論文 参考訳(メタデータ) (2023-02-15T12:02:30Z) - L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and
Accurate Deep Learning [24.712888488317816]
トレーニング中にモデルの層をまたいだ圧縮の度合いを動的に適用するためのフレームワークを提供する。
我々のフレームワークはL-GreCoと呼ばれ、モデル層に対する最適圧縮パラメータを自動的に選択する適応アルゴリズムに基づいている。
論文 参考訳(メタデータ) (2022-10-31T14:37:41Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
本稿では,エンコーダとデコーダの両端に内在するニューラル表現を強化することで,符号化性能の向上を図るシステムを提案する。
実験により,提案手法はJPEGに対する速度歪み性能を,様々な品質指標で改善することを示した。
論文 参考訳(メタデータ) (2022-01-27T20:20:03Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
本稿では,効率的なネットワーク圧縮のための新しい構造空間分割法を提案する。
提案手法は, 畳み込み重みに対する構造的疎度を自動的に誘導する。
また,学習可能なチャネルシャッフル機構によるグループ間通信の問題にも対処する。
論文 参考訳(メタデータ) (2020-02-19T12:03:10Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
本稿では,ディープニューラルネットワークの表現と学習能力を活用することで,エンドツーエンドの特徴圧縮手法を提案する。
特に、抽出した特徴量を、レート歪みコストを最適化することにより、エンドツーエンドでコンパクトに符号化する。
提案モデルの有効性を顔の特徴で検証し, 圧縮性能を高いレート精度で評価した。
論文 参考訳(メタデータ) (2020-02-10T10:08:44Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
本稿では,3つの新しい技術に基づくEDIC(Efficient Deep Image Compression)という統合フレームワークを提案する。
具体的には、学習に基づく画像圧縮のためのオートエンコーダスタイルのネットワークを設計する。
EDIC法は,映像圧縮性能を向上させるために,Deep Video Compression (DVC) フレームワークに容易に組み込むことができる。
論文 参考訳(メタデータ) (2020-02-09T14:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。