Enhancing IoT Security Against DDoS Attacks through Federated Learning
- URL: http://arxiv.org/abs/2403.10968v1
- Date: Sat, 16 Mar 2024 16:45:28 GMT
- Title: Enhancing IoT Security Against DDoS Attacks through Federated Learning
- Authors: Ghazaleh Shirvani, Saeid Ghasemshirazi, Mohammad Ali Alipour,
- Abstract summary: Internet of Things (IoT) has ushered in transformative connectivity between physical devices and the digital realm.
Traditional DDoS mitigation approaches are ill-equipped to handle the intricacies of IoT ecosystems.
This paper introduces an innovative strategy to bolster the security of IoT networks against DDoS attacks by harnessing the power of Federated Learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid proliferation of the Internet of Things (IoT) has ushered in transformative connectivity between physical devices and the digital realm. Nonetheless, the escalating threat of Distributed Denial of Service (DDoS) attacks jeopardizes the integrity and reliability of IoT networks. Conventional DDoS mitigation approaches are ill-equipped to handle the intricacies of IoT ecosystems, potentially compromising data privacy. This paper introduces an innovative strategy to bolster the security of IoT networks against DDoS attacks by harnessing the power of Federated Learning that allows multiple IoT devices or edge nodes to collaboratively build a global model while preserving data privacy and minimizing communication overhead. The research aims to investigate Federated Learning's effectiveness in detecting and mitigating DDoS attacks in IoT. Our proposed framework leverages IoT devices' collective intelligence for real-time attack detection without compromising sensitive data. This study proposes innovative deep autoencoder approaches for data dimensionality reduction, retraining, and partial selection to enhance the performance and stability of the proposed model. Additionally, two renowned aggregation algorithms, FedAvg and FedAvgM, are employed in this research. Various metrics, including true positive rate, false positive rate, and F1-score, are employed to evaluate the model. The dataset utilized in this research, N-BaIoT, exhibits non-IID data distribution, where data categories are distributed quite differently. The negative impact of these distribution disparities is managed by employing retraining and partial selection techniques, enhancing the final model's stability. Furthermore, evaluation results demonstrate that the FedAvgM aggregation algorithm outperforms FedAvg, indicating that in non-IID datasets, FedAvgM provides better stability and performance.
Related papers
- A Comparative Analysis of Machine Learning Models for DDoS Detection in IoT Networks [0.0]
It evaluates the efficacy of different machine learning models, such as XGBoost, in detecting DDoS attacks from normal network traffic.
The effectiveness of these models is analyzed, showing how machine learning can greatly enhance IoT security frameworks.
arXiv Detail & Related papers (2024-11-08T12:23:41Z) - FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
Federated Learning is a privacy preserving decentralized machine learning paradigm.
Recent research has revealed that private ground truth data can be recovered through a gradient technique known as Deep Leakage.
This paper introduces the FEDLAD Framework (Federated Evaluation of Deep Leakage Attacks and Defenses), a comprehensive benchmark for evaluating Deep Leakage attacks and defenses.
arXiv Detail & Related papers (2024-11-05T11:42:26Z) - FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
Internet of Things (IoT) devices across multiple sectors has escalated serious network security concerns.
Traditional Machine Learning (ML)-based Intrusion Detection Systems (IDSs) for cyber-attack classification require data transmission from IoT devices to a centralized server for traffic analysis, raising severe privacy concerns.
We introduce FedMADE, a novel dynamic aggregation method, which clusters devices by their traffic patterns and aggregates local models based on their contributions towards overall performance.
arXiv Detail & Related papers (2024-08-13T18:42:34Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
The integration of Internet of Things (IoT) applications in our daily lives has led to a surge in data traffic, posing significant security challenges.
This paper focuses on improving the effectiveness of ML-based IDS at the edge level by introducing a novel method to find a balanced trade-off between cost and accuracy.
arXiv Detail & Related papers (2024-04-29T21:26:18Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Federated Deep Learning for Intrusion Detection in IoT Networks [1.3097853961043058]
A common approach to implementing AI-based Intrusion Detection systems (IDSs) in distributed IoT systems is in a centralised manner.
This approach may violate data privacy and prohibit IDS scalability.
We design an experiment representative of the real world and evaluate the performance of an FL-based IDS.
arXiv Detail & Related papers (2023-06-05T09:08:24Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
We address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data.
Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices.
We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem.
arXiv Detail & Related papers (2023-02-22T15:52:37Z) - RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency
IoT systems [41.1371349978643]
We present an approach that targets the security of collaborative deep inference via re-thinking the distribution strategy.
We formulate this methodology, as an optimization, where we establish a trade-off between the latency of co-inference and the privacy-level of data.
arXiv Detail & Related papers (2022-08-27T14:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.