Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices
- URL: http://arxiv.org/abs/2406.02768v1
- Date: Tue, 4 Jun 2024 20:36:21 GMT
- Title: Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices
- Authors: Mohammed Jouhari, Mohsen Guizani,
- Abstract summary: Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices make it challenging to deploy conventional computing-based IDSs.
We propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset.
- Score: 38.16309790239142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems. It is not surprising that the same technology is being applied to secure Internet of Things (IoT) networks from cyber threats. The limited computational resources available on IoT devices make it challenging to deploy conventional computing-based IDSs. The IDSs designed for IoT environments must also demonstrate high classification performance, utilize low-complexity models, and be of a small size. Despite significant progress in IoT-based intrusion detection, developing models that both achieve high classification performance and maintain reduced complexity remains challenging. In this study, we propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset. The proposed model is specifically designed to run onboard resource-constrained IoT devices and meet their computation capability requirements. Despite the complexity of designing a model that fits the requirements of IoT devices and achieves higher accuracy, our proposed model outperforms the existing research efforts in the literature by achieving an accuracy of 97.28\% for binary classification and 96.91\% for multiclassification.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Efficient Intrusion Detection: Combining $χ^2$ Feature Selection with CNN-BiLSTM on the UNSW-NB15 Dataset [2.239394800147746]
Intrusion Detection Systems (IDSs) have played a significant role in the detection and prevention of cyber-attacks in traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices pose a challenge for deploying conventional computing-based IDSs.
We present an effective IDS model that addresses this issue by combining a lightweight Convolutional Neural Network (CNN) with bidirectional Long Short-Term Memory (BiLSTM)
arXiv Detail & Related papers (2024-07-20T17:41:16Z) - A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
This paper proposes an innovative design of the Internet of Things (IoT) Environment Intrusion Detection System (or IDS) using Deep Learning-integrated Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks.
Our model, based on the CICIDS 2017 dataset, achieved an accuracy of 99.52% in classifying network traffic as either benign or malicious.
arXiv Detail & Related papers (2024-06-18T08:42:51Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
Our proposed model consists on a combination of convolutional neural network (CNN) and long short-term memory (LSTM) deep learning (DL) models.
This fusion facilitates the detection and classification of IoT traffic into binary categories, benign and malicious activities.
Our proposed model achieves an accuracy rate of 98.42%, accompanied by a minimal loss of 0.0275.
arXiv Detail & Related papers (2024-05-28T22:12:15Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Constrained Twin Variational Auto-Encoder for Intrusion Detection in IoT
Systems [30.16714420093091]
Intrusion detection systems (IDSs) play a critical role in protecting billions of IoT devices from malicious attacks.
This article proposes a novel deep neural network/architecture called Constrained Twin Variational Auto-Encoder (CTVAE)
CTVAE can boost around 1% in terms of accuracy and Fscore in detection attack compared to the state-of-the-art machine learning and representation learning methods.
arXiv Detail & Related papers (2023-12-05T04:42:04Z) - Revolutionizing Cyber Threat Detection with Large Language Models: A
privacy-preserving BERT-based Lightweight Model for IoT/IIoT Devices [3.340416780217405]
This paper presents SecurityBERT, a novel architecture that leverages the Bidirectional Representations from Transformers (BERT) model for cyber threat detection in IoT networks.
Our research demonstrates that SecurityBERT outperforms traditional Machine Learning (ML) and Deep Learning (DL) methods, such as Convolutional Neural Networks (CNNIoTs) or Recurrent Neural Networks (IoTRNNs) in cyber threat detection.
SecurityBERT achieved an impressive 98.2% overall accuracy in identifying fourteen distinct attack types, surpassing previous records set by hybrid solutions.
arXiv Detail & Related papers (2023-06-25T15:04:21Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.