論文の概要: Lambda: Learning Matchable Prior For Entity Alignment with Unlabeled Dangling Cases
- arxiv url: http://arxiv.org/abs/2403.10978v2
- Date: Sat, 09 Nov 2024 18:46:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:04:56.266023
- Title: Lambda: Learning Matchable Prior For Entity Alignment with Unlabeled Dangling Cases
- Title(参考訳): Lambda: ラベルなしのダングリングケースでエンティティアライメントを前向きに学習する
- Authors: Hang Yin, Liyao Xiang, Dong Ding, Yuheng He, Yihan Wu, Xinbing Wang, Chenghu Zhou,
- Abstract要約: 検出とエンティティアライメントのダングリングのためのフレームワーク textitLambda を提案する。
Lambdaは、KEESAと呼ばれるGNNベースのエンコーダと、EAのスペクトルコントラスト学習と、iPULEと呼ばれる検出をダングリングするための正の未ラベル学習アルゴリズムを備えている。
- 参考スコア(独自算出の注目度): 49.86384156476041
- License:
- Abstract: We investigate the entity alignment (EA) problem with unlabeled dangling cases, meaning that partial entities have no counterparts in the other knowledge graph (KG), and this type of entity remains unlabeled. To address this challenge, we propose the framework \textit{Lambda} for dangling detection and then entity alignment. Lambda features a GNN-based encoder called KEESA with spectral contrastive learning for EA and a positive-unlabeled learning algorithm for dangling detection called iPULE. iPULE offers theoretical guarantees of unbiasedness, uniform deviation bounds, and convergence. Experimental results demonstrate that each component contributes to overall performances that are superior to baselines, even when baselines additionally exploit 30\% of dangling entities labeled for training.
- Abstract(参考訳): 非ラベルダングリングケースによるエンティティアライメント(EA)問題について検討し、これは部分エンティティが他の知識グラフ(KG)にはないことを意味し、この種のエンティティは未ラベルのままである。
この課題に対処するために、検出をダングリングし、エンティティアライメントを行うためのフレームワーク \textit{Lambda} を提案する。
Lambdaは、KEESAと呼ばれるGNNベースのエンコーダと、EAのスペクトルコントラスト学習と、iPULEと呼ばれる検出をダングリングするための正の未ラベル学習アルゴリズムを備えている。
iPULEは、不偏性、均一な偏差境界、収束の理論的保証を提供する。
実験の結果、ベースラインがトレーニング用にラベル付けされたダングリングエンティティの30%を活用しても、各コンポーネントがベースラインよりも優れた全体的なパフォーマンスに寄与することが示された。
関連論文リスト
- SEG:Seeds-Enhanced Iterative Refinement Graph Neural Network for Entity Alignment [13.487673375206276]
本稿では,マルチソースデータと反復的シード拡張を融合したソフトラベル伝搬フレームワークを提案する。
正試料間距離と負試料の差分処理を行う双方向重み付き共同損失関数を実装した。
提案手法は,既存の半教師付きアプローチよりも優れており,複数のデータセットにおいて優れた結果が得られた。
論文 参考訳(メタデータ) (2024-10-28T04:50:46Z) - EventEA: Benchmarking Entity Alignment for Event-centric Knowledge
Graphs [17.27027602556303]
過去の進歩は偏りと不整合性評価によるものであることが示されています。
我々は、イベント中心のKGに基づいて、異種関係と属性を持つ新しいデータセットを構築した。
この問題に対する新たなアプローチとして,エンティティアライメントのためのタイムアウェアリテラルエンコーダを提案する。
論文 参考訳(メタデータ) (2022-11-05T05:34:21Z) - Large-scale Entity Alignment via Knowledge Graph Merging, Partitioning
and Embedding [29.81122170002021]
本稿では,3つの視点から構造とアライメント損失を低減するため,スケーラブルなGNNベースのエンティティアライメント手法を提案する。
まず,中心性に基づく部分グラフ生成アルゴリズムを提案し,異なる部分グラフ間のブリッジとして機能するいくつかのランドマークエンティティをリコールする。
第二に、不完全近傍部分グラフから実体表現を復元する自己教師型実体再構成を導入する。
第三に、推論過程において、サブグラフの埋め込みをマージして、アライメント探索のための単一の空間を作る。
論文 参考訳(メタデータ) (2022-08-23T07:09:59Z) - Dangling-Aware Entity Alignment with Mixed High-Order Proximities [65.53948800594802]
ダングリングを意識したエンティティアライメントは、知識グラフにおいて未探索だが重要な問題である。
ダングリング・アウェア・エンティティアライメントにおける混合高次近似を用いたフレームワークを提案する。
我々のフレームワークはより正確にダングリングエンティティを検出し、マッチング可能なエンティティをよりよく調整します。
論文 参考訳(メタデータ) (2022-05-05T02:39:55Z) - Knowing the No-match: Entity Alignment with Dangling Cases [22.909706377522614]
本稿では,知識グラフ(KG)におけるエンティティアライメントの新しい問題設定について検討する。
KG は異なる実体の集合を持つため、それらの間にアライメントが見つからない実体が存在する可能性があり、実体をダングリングする問題を引き起こす。
我々は、新しいデータセットを構築し、エンティティアライメントとダングリングエンティティ検出の両方のためのマルチタスク学習フレームワークを設計する。
論文 参考訳(メタデータ) (2021-06-04T04:28:36Z) - Towards Entity Alignment in the Open World: An Unsupervised Approach [29.337157862514204]
これは知識のカバレッジと品質を高めるために知識グラフ(kgs)を統合する上で重要なステップである。
最先端のソリューションは、モデルトレーニングにラベル付きデータに頼る傾向があります。
オープンな世界でエンティティアライメントを行う監視されていないフレームワークを提供します。
論文 参考訳(メタデータ) (2021-01-26T03:10:24Z) - Empirical Analysis of Unlabeled Entity Problem in Named Entity
Recognition [47.273602658066196]
多くのシナリオにおいて、名前付きエンティティ認識モデルはラベル付きエンティティ問題に苦しむ。
ラベルのないエンティティによってもたらされる誤解をほとんど排除できる一般的なアプローチを提案する。
私たちのモデルは、ラベルのないエンティティ問題に堅牢であり、以前のベースラインを超えます。
論文 参考訳(メタデータ) (2020-12-10T02:53:59Z) - Autoregressive Entity Retrieval [55.38027440347138]
エンティティは、知識の表現と集約の方法の中心にあります。
クエリが与えられたエンティティを検索できることは、エンティティリンクやオープンドメインの質問応答のような知識集約的なタスクに基本となる。
本稿では,自己回帰方式でトークン・バイ・トークンを左から右に生成し,エンティティを検索する最初のシステムであるGENREを提案する。
論文 参考訳(メタデータ) (2020-10-02T10:13:31Z) - Visual Pivoting for (Unsupervised) Entity Alignment [93.82387952905756]
本研究は、異種知識グラフ(KGs)におけるエンティティの整列のための視覚的意味表現の使用について研究する。
提案した新しいアプローチであるEVAは、クロスグラフエンティティアライメントのための強い信号を提供する包括的エンティティ表現を生成する。
論文 参考訳(メタデータ) (2020-09-28T20:09:40Z) - Neighborhood Matching Network for Entity Alignment [71.24217694278616]
Neighborhood Matching Network (NMN)は、新しいエンティティアライメントフレームワークである。
NMNは、トポロジカル構造と近傍差の両方を捉えるために、エンティティ間の類似性を推定する。
まず、新しいグラフサンプリング法を用いて、各エンティティの識別的近傍を蒸留する。
その後、クロスグラフの近傍マッチングモジュールを採用し、与えられたエンティティペアの近傍差を共同で符号化する。
論文 参考訳(メタデータ) (2020-05-12T08:26:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。