論文の概要: Texture Edge detection by Patch consensus (TEP)
- arxiv url: http://arxiv.org/abs/2403.11038v1
- Date: Sat, 16 Mar 2024 23:01:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 20:27:00.475009
- Title: Texture Edge detection by Patch consensus (TEP)
- Title(参考訳): パッチコンセンサス(TEP)によるテクスチャエッジ検出
- Authors: Guangyu Cui, Sung Ha Kang,
- Abstract要約: 局所パッチ情報のセグメンテーションを用いて,テクスチャエッジの位置を識別する手法を提案する。
異なるテクスチャ間の類似点と相違点を強調するために、局所パッチと近隣地域に対する応答を利用する。
応答のセグメンテーションのステップは、エッジ位置をさらに強調し、近隣の投票は合意を与え、エッジ検出を安定化させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Texture Edge detection using Patch consensus (TEP) which is a training-free method to detect the boundary of texture. We propose a new simple way to identify the texture edge location, using the consensus of segmented local patch information. While on the boundary, even using local patch information, the distinction between textures are typically not clear, but using neighbor consensus give a clear idea of the boundary. We utilize local patch, and its response against neighboring regions, to emphasize the similarities and the differences across different textures. The step of segmentation of response further emphasizes the edge location, and the neighborhood voting gives consensus and stabilize the edge detection. We analyze texture as a stationary process to give insight into the patch width parameter verses the quality of edge detection. We derive the necessary condition for textures to be distinguished, and analyze the patch width with respect to the scale of textures. Various experiments are presented to validate the proposed model.
- Abstract(参考訳): 本研究では,テクスチャの境界を検出するトレーニング不要な手法であるパッチコンセンサス(TEP)を用いたテクスチャエッジ検出を提案する。
局所パッチ情報のセグメンテーションを用いて,テクスチャエッジの位置を識別する手法を提案する。
境界線では、局所的なパッチ情報を用いても、テクスチャの区別は明らかになっていないが、隣のコンセンサスを用いて、境界線を明確に考えることができる。
異なるテクスチャ間の類似点と相違点を強調するために、局所パッチと近隣地域に対する応答を利用する。
応答のセグメンテーションのステップは、エッジ位置をさらに強調し、近隣の投票は合意を与え、エッジ検出を安定化させる。
テクスチャを定常的プロセスとして解析し、パッチ幅パラメータの洞察がエッジ検出の質に反することを示す。
テクスチャを区別するために必要な条件を導出し,テクスチャのスケールに関するパッチ幅を解析する。
提案モデルを検証するために,様々な実験を行った。
関連論文リスト
- GenesisTex: Adapting Image Denoising Diffusion to Texture Space [15.907134430301133]
GenesisTexはテキスト記述から3次元幾何学のテクスチャを合成する新しい手法である。
我々は,各視点に対して潜在テクスチャマップを保持し,対応する視点の描画に予測ノイズを伴って更新する。
大域的整合性は、ノイズ予測ネットワーク内のスタイル整合性機構の統合によって達成される。
論文 参考訳(メタデータ) (2024-03-26T15:15:15Z) - PATS: Patch Area Transportation with Subdivision for Local Feature
Matching [78.67559513308787]
局所特徴マッチングは、一対のイメージ間のスパース対応を確立することを目的としている。
この問題に対処するために,PATS(Patch Area Transportation with Subdivision)を提案する。
PATSは、マッチング精度とカバレッジの両方を改善し、下流タスクにおいて優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-03-14T08:28:36Z) - Comprehensive Studies for Arbitrary-shape Scene Text Detection [78.50639779134944]
ボトムアップに基づくシーンテキスト検出のための統合フレームワークを提案する。
統一されたフレームワークの下では、非コアモジュールの一貫性のある設定が保証されます。
包括的調査と精巧な分析により、以前のモデルの利点と欠点を明らかにしている。
論文 参考訳(メタデータ) (2021-07-25T13:18:55Z) - Attention Toward Neighbors: A Context Aware Framework for High
Resolution Image Segmentation [2.9210447295585724]
本稿では,隣接するパッチからコンテキスト情報を取り入れ,特定のパッチをセグメント化する新しいフレームワークを提案する。
これにより、セグメンテーションネットワークは、より大きな機能マップを必要とせずに、より広い視野でターゲットパッチを見ることができる。
論文 参考訳(メタデータ) (2021-06-24T10:58:09Z) - Deep Texture-Aware Features for Camouflaged Object Detection [69.84122372541506]
本稿では, テクスチャ認識モジュールを定式化し, 深層畳み込みニューラルネットワークにおけるテクスチャ認識の特徴を学習する。
我々は,キャモフラージュされた物体検出のためのベンチマークデータセット上で,定性的かつ定量的にネットワークを評価した。
論文 参考訳(メタデータ) (2021-02-05T04:38:32Z) - Texture Transform Attention for Realistic Image Inpainting [6.275013056564918]
本研究では,細心の注意を払って絵を描いていない領域をより良く生成するテクスチャトランスフォーメーション・アテンション・ネットワークを提案する。
Texture Transform Attentionは、細かいテクスチャと粗いセマンティクスを使用して、新しい再組み立てテクスチャマップを作成するために使用されます。
我々は,公開データセット celeba-hq と places2 を用いて,エンドツーエンドでモデルを評価する。
論文 参考訳(メタデータ) (2020-12-08T06:28:51Z) - Texture Memory-Augmented Deep Patch-Based Image Inpainting [121.41395272974611]
本研究では,未成熟領域から抽出したパッチサンプルのテクスチャメモリによってテクスチャ生成をガイドする,新しいディープ・インペイント・フレームワークを提案する。
このフレームワークは、テクスチャメモリの検索を、ディープ・インパインティング・ネットワークでエンドツーエンドにトレーニングできる新しい設計である。
提案手法は,3つの課題の画像ベンチマークにおいて,質的かつ定量的に優れた性能を示す。
論文 参考訳(メタデータ) (2020-09-28T12:09:08Z) - SimPatch: A Nearest Neighbor Similarity Match between Image Patches [0.0]
比較的小さなパッチではなく、大きなパッチを使って、各パッチにより多くの情報が含まれるようにしています。
特徴行列を構成する個々の画像パッチの特徴を抽出するために,異なる特徴抽出機構を用いる。
最寄りのパッチは、与えられた画像に対するクエリパッチに対して、2つの異なる近接アルゴリズムを用いて計算される。
論文 参考訳(メタデータ) (2020-08-07T10:51:10Z) - ContourNet: Taking a Further Step toward Accurate Arbitrary-shaped Scene
Text Detection [147.10751375922035]
本研究では,シーンテキストの偽陽性と大規模分散を効果的に処理するContourNetを提案する。
本手法は,両方向の応答値の高い予測を出力するだけで,これらの偽陽性を効果的に抑制する。
論文 参考訳(メタデータ) (2020-04-10T08:15:23Z) - Guidance and Evaluation: Semantic-Aware Image Inpainting for Mixed
Scenes [54.836331922449666]
本稿では,SGE-Net(Semantic Guidance and Evaluation Network)を提案する。
セマンティックセグメンテーションマップをインペイントの各尺度のガイダンスとして利用し、そこで位置依存推論を再評価する。
混合シーンの現実画像に対する実験により,提案手法が最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-03-15T17:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。