Regulating Chatbot Output via Inter-Informational Competition
- URL: http://arxiv.org/abs/2403.11046v1
- Date: Sun, 17 Mar 2024 00:11:15 GMT
- Title: Regulating Chatbot Output via Inter-Informational Competition
- Authors: Jiawei Zhang,
- Abstract summary: This Article develops a yardstick for reevaluating both AI-related content risks and corresponding regulatory proposals.
It argues that sufficient competition among information outlets in the information marketplace can sufficiently mitigate and even resolve most content risks posed by generative AI technologies.
- Score: 8.168523242105763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of ChatGPT has sparked over a year of regulatory frenzy. However, few existing studies have rigorously questioned the assumption that, if left unregulated, AI chatbot's output would inflict tangible, severe real harm on human affairs. Most researchers have overlooked the critical possibility that the information market itself can effectively mitigate these risks and, as a result, they tend to use regulatory tools to address the issue directly. This Article develops a yardstick for reevaluating both AI-related content risks and corresponding regulatory proposals by focusing on inter-informational competition among various outlets. The decades-long history of regulating information and communications technologies indicates that regulators tend to err too much on the side of caution and to put forward excessive regulatory measures when encountering the uncertainties brought about by new technologies. In fact, a trove of empirical evidence has demonstrated that market competition among information outlets can effectively mitigate most risks and that overreliance on regulation is not only unnecessary but detrimental, as well. This Article argues that sufficient competition among chatbots and other information outlets in the information marketplace can sufficiently mitigate and even resolve most content risks posed by generative AI technologies. This renders certain loudly advocated regulatory strategies, like mandatory prohibitions, licensure, curation of datasets, and notice-and-response regimes, truly unnecessary and even toxic to desirable competition and innovation throughout the AI industry. Ultimately, the ideas that I advance in this Article should pour some much-needed cold water on the regulatory frenzy over generative AI and steer the issue back to a rational track.
Related papers
- An FDA for AI? Pitfalls and Plausibility of Approval Regulation for Frontier Artificial Intelligence [0.0]
We explore the applicability of approval regulation -- that is, regulation of a product that combines experimental minima with government licensure conditioned partially or fully upon that experimentation -- to the regulation of frontier AI.
There are a number of reasons to believe that approval regulation, simplistically applied, would be inapposite for frontier AI risks.
We conclude by highlighting the role of policy learning and experimentation in regulatory development.
arXiv Detail & Related papers (2024-08-01T17:54:57Z) - The Dual Imperative: Innovation and Regulation in the AI Era [0.0]
This article addresses the societal costs associated with the lack of regulation in Artificial Intelligence.
Over fifty years of AI research, have propelled AI into the mainstream, promising significant economic benefits.
The discourse is polarized between accelerationists, advocating for unfettered technological advancement, and doomers, calling for a slowdown to prevent dystopian outcomes.
arXiv Detail & Related papers (2024-05-23T08:26:25Z) - Securing the Future of GenAI: Policy and Technology [50.586585729683776]
Governments globally are grappling with the challenge of regulating GenAI, balancing innovation against safety.
A workshop co-organized by Google, University of Wisconsin, Madison, and Stanford University aimed to bridge this gap between GenAI policy and technology.
This paper summarizes the discussions during the workshop which addressed questions, such as: How regulation can be designed without hindering technological progress?
arXiv Detail & Related papers (2024-05-21T20:30:01Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - A Safe Harbor for AI Evaluation and Red Teaming [124.89885800509505]
Some researchers fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal.
We propose that major AI developers commit to providing a legal and technical safe harbor.
We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI.
arXiv Detail & Related papers (2024-03-07T20:55:08Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Regulation and NLP (RegNLP): Taming Large Language Models [51.41095330188972]
We argue how NLP research can benefit from proximity to regulatory studies and adjacent fields.
We advocate for the development of a new multidisciplinary research space on regulation and NLP.
arXiv Detail & Related papers (2023-10-09T09:22:40Z) - AI Regulation in Europe: From the AI Act to Future Regulatory Challenges [3.0821115746307663]
It argues for a hybrid regulatory strategy that combines elements from both philosophies.
The paper examines the AI Act as a pioneering legislative effort to address the multifaceted challenges posed by AI.
It advocates for immediate action to create protocols for regulated access to high-performance, potentially open-source AI systems.
arXiv Detail & Related papers (2023-10-06T07:52:56Z) - Overcoming Failures of Imagination in AI Infused System Development and
Deployment [71.9309995623067]
NeurIPS 2020 requested that research paper submissions include impact statements on "potential nefarious uses and the consequences of failure"
We argue that frameworks of harms must be context-aware and consider a wider range of potential stakeholders, system affordances, as well as viable proxies for assessing harms in the widest sense.
arXiv Detail & Related papers (2020-11-26T18:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.