Securing the Future of GenAI: Policy and Technology
- URL: http://arxiv.org/abs/2407.12999v1
- Date: Tue, 21 May 2024 20:30:01 GMT
- Title: Securing the Future of GenAI: Policy and Technology
- Authors: Mihai Christodorescu, Ryan Craven, Soheil Feizi, Neil Gong, Mia Hoffmann, Somesh Jha, Zhengyuan Jiang, Mehrdad Saberi Kamarposhti, John Mitchell, Jessica Newman, Emelia Probasco, Yanjun Qi, Khawaja Shams, Matthew Turek,
- Abstract summary: Governments globally are grappling with the challenge of regulating GenAI, balancing innovation against safety.
A workshop co-organized by Google, University of Wisconsin, Madison, and Stanford University aimed to bridge this gap between GenAI policy and technology.
This paper summarizes the discussions during the workshop which addressed questions, such as: How regulation can be designed without hindering technological progress?
- Score: 50.586585729683776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of Generative AI (GenAI) brings about transformative potential across sectors, but its dual-use nature also amplifies risks. Governments globally are grappling with the challenge of regulating GenAI, balancing innovation against safety. China, the United States (US), and the European Union (EU) are at the forefront with initiatives like the Management of Algorithmic Recommendations, the Executive Order, and the AI Act, respectively. However, the rapid evolution of GenAI capabilities often outpaces the development of comprehensive safety measures, creating a gap between regulatory needs and technical advancements. A workshop co-organized by Google, University of Wisconsin, Madison (UW-Madison), and Stanford University aimed to bridge this gap between GenAI policy and technology. The diverse stakeholders of the GenAI space -- from the public and governments to academia and industry -- make any safety measures under consideration more complex, as both technical feasibility and regulatory guidance must be realized. This paper summarizes the discussions during the workshop which addressed questions, such as: How regulation can be designed without hindering technological progress? How technology can evolve to meet regulatory standards? The interplay between legislation and technology is a very vast topic, and we don't claim that this paper is a comprehensive treatment on this topic. This paper is meant to capture findings based on the workshop, and hopefully, can guide discussion on this topic.
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Governance of Generative Artificial Intelligence for Companies [1.4003044924094596]
We develop a framework for GenAI governance within companies.
This framework outlines the scope, objectives, and governance mechanisms tailored to harness business opportunities.
arXiv Detail & Related papers (2024-02-05T14:20:19Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
Deepfakes and the spread of m/disinformation have emerged as formidable threats to the integrity of information ecosystems worldwide.
We highlight the mechanisms through which generative AI based on large models (LM-based GenAI) craft seemingly convincing yet fabricated contents.
We introduce an integrated framework that combines advanced detection algorithms, cross-platform collaboration, and policy-driven initiatives.
arXiv Detail & Related papers (2023-11-29T06:47:58Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
This report presents the takeaways of the inaugural Workshop on Generative AI and Law (GenLaw)
A cross-disciplinary group of practitioners and scholars from computer science and law convened to discuss the technical, doctrinal, and policy challenges presented by law for Generative AI.
arXiv Detail & Related papers (2023-11-11T04:13:37Z) - Regulation and NLP (RegNLP): Taming Large Language Models [51.41095330188972]
We argue how NLP research can benefit from proximity to regulatory studies and adjacent fields.
We advocate for the development of a new multidisciplinary research space on regulation and NLP.
arXiv Detail & Related papers (2023-10-09T09:22:40Z) - AI Regulation in Europe: From the AI Act to Future Regulatory Challenges [3.0821115746307663]
It argues for a hybrid regulatory strategy that combines elements from both philosophies.
The paper examines the AI Act as a pioneering legislative effort to address the multifaceted challenges posed by AI.
It advocates for immediate action to create protocols for regulated access to high-performance, potentially open-source AI systems.
arXiv Detail & Related papers (2023-10-06T07:52:56Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
This paper reports the findings of a workshop held at Google on the dual-use dilemma posed by GenAI.
GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks.
We discuss short-term and long-term goals for the community on this topic.
arXiv Detail & Related papers (2023-08-28T18:51:09Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Voluntary safety commitments provide an escape from over-regulation in
AI development [8.131948859165432]
This work reveals for the first time how voluntary commitments, with sanctions either by peers or an institution, leads to socially beneficial outcomes.
Results are directly relevant for the design of governance and regulatory policies that aim to ensure an ethical and responsible AI technology development process.
arXiv Detail & Related papers (2021-04-08T12:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.