From Pixels to Predictions: Spectrogram and Vision Transformer for Better Time Series Forecasting
- URL: http://arxiv.org/abs/2403.11047v1
- Date: Sun, 17 Mar 2024 00:14:29 GMT
- Title: From Pixels to Predictions: Spectrogram and Vision Transformer for Better Time Series Forecasting
- Authors: Zhen Zeng, Rachneet Kaur, Suchetha Siddagangappa, Tucker Balch, Manuela Veloso,
- Abstract summary: Time series forecasting plays a crucial role in decision-making across various domains.
Recent studies have explored image-driven approaches using computer vision models to address these challenges.
We propose a novel approach that uses time-frequency spectrograms as the visual representation of time series data.
- Score: 15.234725654622135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting plays a crucial role in decision-making across various domains, but it presents significant challenges. Recent studies have explored image-driven approaches using computer vision models to address these challenges, often employing lineplots as the visual representation of time series data. In this paper, we propose a novel approach that uses time-frequency spectrograms as the visual representation of time series data. We introduce the use of a vision transformer for multimodal learning, showcasing the advantages of our approach across diverse datasets from different domains. To evaluate its effectiveness, we compare our method against statistical baselines (EMA and ARIMA), a state-of-the-art deep learning-based approach (DeepAR), other visual representations of time series data (lineplot images), and an ablation study on using only the time series as input. Our experiments demonstrate the benefits of utilizing spectrograms as a visual representation for time series data, along with the advantages of employing a vision transformer for simultaneous learning in both the time and frequency domains.
Related papers
- FFAD: A Novel Metric for Assessing Generated Time Series Data Utilizing
Fourier Transform and Auto-encoder [9.103662085683304]
The Fr'echet Inception Distance (FID) serves as the standard metric for evaluating generative models in image synthesis.
This work proposes a novel solution leveraging the Fourier transform and Auto-encoder, termed the Fr'echet Fourier-transform Auto-encoder Distance (FFAD)
Through our experimental results, we showcase the potential of FFAD for effectively distinguishing samples from different classes.
arXiv Detail & Related papers (2024-03-11T10:26:04Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Unsupervised Multi-modal Feature Alignment for Time Series
Representation Learning [20.655943795843037]
We introduce an innovative approach that focuses on aligning and binding time series representations encoded from different modalities.
In contrast to conventional methods that fuse features from multiple modalities, our proposed approach simplifies the neural architecture by retaining a single time series encoder.
Our approach outperforms existing state-of-the-art URL methods across diverse downstream tasks.
arXiv Detail & Related papers (2023-12-09T22:31:20Z) - Time Series as Images: Vision Transformer for Irregularly Sampled Time
Series [32.99466250557855]
This paper introduces a novel perspective by converting irregularly sampled time series into line graph images.
We then utilize powerful pre-trained vision transformers for time series classification in the same way as image classification.
Remarkably, despite its simplicity, our approach outperforms state-of-the-art specialized algorithms on several popular healthcare and human activity datasets.
arXiv Detail & Related papers (2023-03-01T22:42:44Z) - ViTs for SITS: Vision Transformers for Satellite Image Time Series [52.012084080257544]
We introduce a fully-attentional model for general Satellite Image Time Series (SITS) processing based on the Vision Transformer (ViT)
TSViT splits a SITS record into non-overlapping patches in space and time which are tokenized and subsequently processed by a factorized temporo-spatial encoder.
arXiv Detail & Related papers (2023-01-12T11:33:07Z) - W-Transformers : A Wavelet-based Transformer Framework for Univariate
Time Series Forecasting [7.075125892721573]
We build a transformer model for non-stationary time series using wavelet-based transformer encoder architecture.
We evaluate our framework on several publicly available benchmark time series datasets from various domains.
arXiv Detail & Related papers (2022-09-08T17:39:38Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback [3.347485580830609]
PSEUDo is an adaptive feature learning technique for exploring visual patterns in multi-track sequential data.
Our algorithm features sub-linear training and inference time.
We demonstrate superiority of PSEUDo in terms of efficiency, accuracy, and steerability.
arXiv Detail & Related papers (2021-04-30T13:00:44Z) - Visualising Deep Network's Time-Series Representations [93.73198973454944]
Despite the popularisation of machine learning models, more often than not they still operate as black boxes with no insight into what is happening inside the model.
In this paper, a method that addresses that issue is proposed, with a focus on visualising multi-dimensional time-series data.
Experiments on a high-frequency stock market dataset show that the method provides fast and discernible visualisations.
arXiv Detail & Related papers (2021-03-12T09:53:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.