論文の概要: Controllable Relation Disentanglement for Few-Shot Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2403.11070v1
- Date: Sun, 17 Mar 2024 03:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 20:17:05.964754
- Title: Controllable Relation Disentanglement for Few-Shot Class-Incremental Learning
- Title(参考訳): Few-Shot Class-Incremental Learningのための制御可能な関係の絡み合い
- Authors: Yuan Zhou, Richang Hong, Yanrong Guo, Lin Liu, Shijie Hao, Hanwang Zhang,
- Abstract要約: 本稿では,FewShot Class-Incremental Learning (FSCIL) を新たな視点,すなわち関係の絡み合いから扱うことを提案する。
急激な相関関係を切り離すことの課題は、FSCILの制御性が悪いことである。
我々は、CTRL-FSCIL(Controllable Relation-disentang FewShot Class-Incremental Learning)と呼ばれる、新しいシンプルな効果のある手法を提案する。
- 参考スコア(独自算出の注目度): 82.79371269942146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose to tackle Few-Shot Class-Incremental Learning (FSCIL) from a new perspective, i.e., relation disentanglement, which means enhancing FSCIL via disentangling spurious relation between categories. The challenge of disentangling spurious correlations lies in the poor controllability of FSCIL. On one hand, an FSCIL model is required to be trained in an incremental manner and thus it is very hard to directly control relationships between categories of different sessions. On the other hand, training samples per novel category are only in the few-shot setting, which increases the difficulty of alleviating spurious relation issues as well. To overcome this challenge, in this paper, we propose a new simple-yet-effective method, called ConTrollable Relation-disentangLed Few-Shot Class-Incremental Learning (CTRL-FSCIL). Specifically, during the base session, we propose to anchor base category embeddings in feature space and construct disentanglement proxies to bridge gaps between the learning for category representations in different sessions, thereby making category relation controllable. During incremental learning, the parameters of the backbone network are frozen in order to relieve the negative impact of data scarcity. Moreover, a disentanglement loss is designed to effectively guide a relation disentanglement controller to disentangle spurious correlations between the embeddings encoded by the backbone. In this way, the spurious correlation issue in FSCIL can be suppressed. Extensive experiments on CIFAR-100, mini-ImageNet, and CUB-200 datasets demonstrate the effectiveness of our CTRL-FSCIL method.
- Abstract(参考訳): 本稿では,FSCIL(Few-Shot Class-Incremental Learning, FSCIL)に新たな視点,すなわち関係のゆがみ(relation disentanglement)という視点で取り組むことを提案する。
急激な相関関係を切り離すことの課題は、FSCILの制御性が悪いことである。
一方、FSCILモデルは漸進的に訓練する必要があるため、異なるセッションのカテゴリ間の関係を直接制御することは極めて困難である。
一方、新規カテゴリ毎のトレーニングサンプルは、数ショット設定に限られており、急激な関係問題を緩和することの難しさも増している。
本稿では,この課題を解決するために,ConTrollable Relation-disentangLed Few-Shot Class-Incremental Learning (CTRL-FSCIL) と呼ばれる,よりシンプルな手法を提案する。
具体的には,各セッションにおけるカテゴリ表現の学習のギャップを埋めるために,特徴空間におけるカテゴリの埋め込みを固定し,アンタングル化プロキシを構築し,カテゴリ関係を制御可能にすることを提案する。
漸進的な学習では、データ不足による負の影響を緩和するため、バックボーンネットワークのパラメータは凍結される。
さらに、背骨によって符号化された埋め込み間の急激な相関関係を乱すように、関係の絡み合い制御を効果的に導くように、絡み合い損失を設計する。
これにより、FSCILの急激な相関問題を抑えることができる。
CIFAR-100, mini-ImageNet, CUB-200データセットの大規模な実験により, CTRL-FSCIL法の有効性が示された。
関連論文リスト
- CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning [52.63674911541416]
FSCIL(Few-shot class-incremental Learning)は、過剰適合や忘れなど、いくつかの課題に直面している。
FSCILの独特な課題に取り組むため、ベースクラスでの表現学習に重点を置いている。
より制限された機能空間内で機能の拡散を確保することで、学習された表現が、伝達可能性と識別可能性のバランスを良くすることが可能になることが分かりました。
論文 参考訳(メタデータ) (2024-10-08T02:23:16Z) - Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning [42.14439854721613]
本稿では,クラス増分学習シナリオに特化して,ベイズ学習駆動型コントラスト損失(BLCL)を持つプロトタイプネットワークを提案する。
提案手法は,ベイズ学習手法を用いて,クロスエントロピーとコントラスト損失関数のバランスを動的に適用する。
論文 参考訳(メタデータ) (2024-05-17T19:49:02Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
本稿では,フェデレート学習におけるデータ不均一性の課題に対処する,新しいコントラスト学習フレームワークを提案する。
当社のフレームワークは,既存のフェデレート学習アプローチを,標準ベンチマークにおいて大きなマージンで上回ります。
論文 参考訳(メタデータ) (2024-01-10T04:55:24Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
従来の検出器は、分類バイアスによる長期データを扱う際の性能劣化に悩まされる。
本稿では,カテゴリ分布の格差に起因する不平等の適応的是正を可能にする,BAlanced CLassification (BACL) と呼ばれる統一フレームワークを提案する。
BACLは、さまざまなバックボーンとアーキテクチャを持つさまざまなデータセット間で、一貫してパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-08-04T09:11:07Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - Rethinking Few-Shot Class-Incremental Learning with Open-Set Hypothesis
in Hyperbolic Geometry [21.38183613466714]
FSCIL(Few-Shot Class-Incremental Learning)は、いくつかのラベル付きサンプルから新しいクラスを段階的に学習することを目的としている。
本稿では,FSCILの構成をオープンセット仮説で再考する。
モデルにクローズセットとオープンセットの両方の認識により良いパフォーマンスを割り当てるために、ハイパーボリック・リシパル・ポイント・ラーニングモジュール(Hyper-RPL)は、ハイパーボリック・ニューラルネットワークを備えたリシパル・ポイント・ラーニング(Reciprocal Point Learning、RPL)上に構築されている。
論文 参考訳(メタデータ) (2022-07-20T15:13:48Z) - R-DFCIL: Relation-Guided Representation Learning for Data-Free Class
Incremental Learning [64.7996065569457]
クラスインクリメンタルラーニング(Class-Incremental Learning, CIL)は、新しい知識を学ぶ際に、破滅的な忘れ方に苦しむ。
近年のDFCIL研究は、従来のクラスのデータ合成のためのモデル反転のような手法を導入している。
本稿では、R-DFCILと呼ばれるDFCILのための関係誘導型表現学習(RRL)を提案する。
論文 参考訳(メタデータ) (2022-03-24T14:54:15Z) - Learning and Exploiting Interclass Visual Correlations for Medical Image
Classification [30.88175218665726]
本稿では、クラス相関学習ネットワーク(CCL-Net)を提案し、与えられたトレーニングデータからクラス間の視覚的相関を学習する。
ネットワークが望ましい相関関係を直接学習させる代わりに,クラス固有の埋め込みの距離メートル法学習を通じて暗黙的に学習することを提案する。
相関関係の幾何学的説明に基づく直感的損失は、クラス間の相関関係の学習を促進するために設計されている。
論文 参考訳(メタデータ) (2020-07-13T13:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。