Neural Markov Random Field for Stereo Matching
- URL: http://arxiv.org/abs/2403.11193v2
- Date: Thu, 21 Mar 2024 07:53:23 GMT
- Title: Neural Markov Random Field for Stereo Matching
- Authors: Tongfan Guan, Chen Wang, Yun-Hui Liu,
- Abstract summary: We propose a neural MRF model, where both potential functions and message passing are designed using data-driven neural networks.
We also propose a Disparity Proposal Network (DPN) to adaptively prune the search space of disparity.
The proposed approach ranks $1st$ on both KITTI 2012 and 2015 leaderboards while running faster than 100 ms.
- Score: 31.769019851152173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stereo matching is a core task for many computer vision and robotics applications. Despite their dominance in traditional stereo methods, the hand-crafted Markov Random Field (MRF) models lack sufficient modeling accuracy compared to end-to-end deep models. While deep learning representations have greatly improved the unary terms of the MRF models, the overall accuracy is still severely limited by the hand-crafted pairwise terms and message passing. To address these issues, we propose a neural MRF model, where both potential functions and message passing are designed using data-driven neural networks. Our fully data-driven model is built on the foundation of variational inference theory, to prevent convergence issues and retain stereo MRF's graph inductive bias. To make the inference tractable and scale well to high-resolution images, we also propose a Disparity Proposal Network (DPN) to adaptively prune the search space of disparity. The proposed approach ranks $1^{st}$ on both KITTI 2012 and 2015 leaderboards among all published methods while running faster than 100 ms. This approach significantly outperforms prior global methods, e.g., lowering D1 metric by more than 50% on KITTI 2015. In addition, our method exhibits strong cross-domain generalization and can recover sharp edges. The codes at https://github.com/aeolusguan/NMRF
Related papers
- Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling [19.60087366873302]
Multi-fidelity surrogate modeling aims to learn an accurate surrogate at the highest fidelity level.
Deep learning approaches utilize neural network based encoders and decoders to improve scalability.
We propose Multi-fidelity Residual Neural Processes (MFRNP), a novel multi-fidelity surrogate modeling framework.
arXiv Detail & Related papers (2024-02-29T04:40:25Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
We propose Branch Orthogonality adveRsarial Training (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training.
We evaluate our approach on CIFAR-10, CIFAR-100, and SVHN against ell_infty norm-bounded perturbations of size epsilon = 8/255, respectively.
arXiv Detail & Related papers (2022-08-17T05:42:59Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - An MRF-UNet Product of Experts for Image Segmentation [1.7897459398362972]
Markov random fields (MRFs) encode simpler over labels that are less prone to over-fitting.
We propose to fuse both strategies by computing the product of distributions of a UNet and an MRF.
The resulting MRF-UNet is trained jointly by back-propagation.
arXiv Detail & Related papers (2021-04-12T14:25:32Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - PushNet: Efficient and Adaptive Neural Message Passing [1.9121961872220468]
Message passing neural networks have recently evolved into a state-of-the-art approach to representation learning on graphs.
Existing methods perform synchronous message passing along all edges in multiple subsequent rounds.
We consider a novel asynchronous message passing approach where information is pushed only along the most relevant edges until convergence.
arXiv Detail & Related papers (2020-03-04T18:15:30Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.