Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling
- URL: http://arxiv.org/abs/2402.18846v2
- Date: Mon, 24 Jun 2024 04:33:30 GMT
- Title: Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling
- Authors: Ruijia Niu, Dongxia Wu, Kai Kim, Yi-An Ma, Duncan Watson-Parris, Rose Yu,
- Abstract summary: Multi-fidelity surrogate modeling aims to learn an accurate surrogate at the highest fidelity level.
Deep learning approaches utilize neural network based encoders and decoders to improve scalability.
We propose Multi-fidelity Residual Neural Processes (MFRNP), a novel multi-fidelity surrogate modeling framework.
- Score: 19.60087366873302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-fidelity surrogate modeling aims to learn an accurate surrogate at the highest fidelity level by combining data from multiple sources. Traditional methods relying on Gaussian processes can hardly scale to high-dimensional data. Deep learning approaches utilize neural network based encoders and decoders to improve scalability. These approaches share encoded representations across fidelities without including corresponding decoder parameters. This hinders inference performance, especially in out-of-distribution scenarios when the highest fidelity data has limited domain coverage. To address these limitations, we propose Multi-fidelity Residual Neural Processes (MFRNP), a novel multi-fidelity surrogate modeling framework. MFRNP explicitly models the residual between the aggregated output from lower fidelities and ground truth at the highest fidelity. The aggregation introduces decoders into the information sharing step and optimizes lower fidelity decoders to accurately capture both in-fidelity and cross-fidelity information. We show that MFRNP significantly outperforms state-of-the-art in learning partial differential equations and a real-world climate modeling task. Our code is published at: https://github.com/Rose-STL-Lab/MFRNP
Related papers
- Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models [0.34592277400656235]
Multi-fidelity machine learning methods integrate scarce, resource-intensive high-fidelity data with abundant but less accurate low-fidelity data.
We propose a practical multi-fidelity strategy for problems spanning low- and high-dimensional domains.
arXiv Detail & Related papers (2024-07-21T10:40:50Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Disentangled Multi-Fidelity Deep Bayesian Active Learning [19.031567953748453]
Multi-fidelity active learning aims to learn a direct mapping from input parameters to simulation outputs at the highest fidelity.
Deep learning-based methods often impose a hierarchical structure in hidden representations, which only supports passing information from low-fidelity to high-fidelity.
We propose a novel framework called Disentangled Multi-fidelity Deep Bayesian Active Learning (D-MFDAL), which learns the surrogate models conditioned on the distribution of functions at multiple fidelities.
arXiv Detail & Related papers (2023-05-07T23:14:58Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Multi-fidelity surrogate modeling using long short-term memory networks [0.0]
We introduce a novel data-driven framework of multi-fidelity surrogate modeling for parametrized, time-dependent problems.
We show that the proposed multi-fidelity LSTM networks not only improve single-fidelity regression significantly, but also outperform the multi-fidelity models based on feed-forward neural networks.
arXiv Detail & Related papers (2022-08-05T12:05:02Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Multi-fidelity regression using artificial neural networks: efficient
approximation of parameter-dependent output quantities [0.17499351967216337]
We present the use of artificial neural networks applied to multi-fidelity regression problems.
The introduced models are compared against a traditional multi-fidelity scheme, co-kriging.
We also show an application of multi-fidelity regression to an engineering problem.
arXiv Detail & Related papers (2021-02-26T11:29:00Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.