論文の概要: CBR - Boosting Adaptive Classification By Retrieval of Encrypted Network Traffic with Out-of-distribution
- arxiv url: http://arxiv.org/abs/2403.11206v1
- Date: Sun, 17 Mar 2024 13:14:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 17:56:21.665465
- Title: CBR - Boosting Adaptive Classification By Retrieval of Encrypted Network Traffic with Out-of-distribution
- Title(参考訳): CBR - オフ・オブ・ディストリビューションによる暗号化されたネットワークトラフィックの検索による適応分類の強化
- Authors: Amir Lukach, Ran Dubin, Amit Dvir, Chen Hajaj,
- Abstract要約: 一般的なアプローチの1つは、一定の数のクラスで機械学習またはディープラーニングベースのソリューションを使用することである。
未知のクラスを扱うソリューションの1つは、モデルを再トレーニングすることである。
本稿では,暗号ネットワークトラフィック分類の新しいアプローチであるRetrieval CBRによる適応分類を提案する。
- 参考スコア(独自算出の注目度): 9.693391036125908
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Encrypted network traffic Classification tackles the problem from different approaches and with different goals. One of the common approaches is using Machine learning or Deep Learning-based solutions on a fixed number of classes, leading to misclassification when an unknown class is given as input. One of the solutions for handling unknown classes is to retrain the model, however, retraining models every time they become obsolete is both resource and time-consuming. Therefore, there is a growing need to allow classification models to detect and adapt to new classes dynamically, without retraining, but instead able to detect new classes using few shots learning [1]. In this paper, we introduce Adaptive Classification By Retrieval CBR, a novel approach for encrypted network traffic classification. Our new approach is based on an ANN-based method, which allows us to effectively identify new and existing classes without retraining the model. The novel approach is simple, yet effective and achieved similar results to RF with up to 5% difference (usually less than that) in the classification tasks while having a slight decrease in the case of new samples (from new classes) without retraining. To summarize, the new method is a real-time classification, which can classify new classes without retraining. Furthermore, our solution can be used as a complementary solution alongside RF or any other machine/deep learning classification method, as an aggregated solution.
- Abstract(参考訳): 暗号化されたネットワークトラフィック分類は、異なるアプローチと異なる目標から問題に取り組む。
一般的なアプローチの1つは、一定の数のクラスに機械学習またはディープラーニングベースのソリューションを使用することで、未知のクラスを入力として与えたときの誤分類につながる。
未知のクラスを扱うソリューションの1つは、モデルを再トレーニングすることである。
そのため、再トレーニングすることなく、分類モデルが新しいクラスを動的に検出し、適応できるようにする必要性が高まっている。
本稿では,暗号ネットワークトラフィック分類の新しいアプローチであるRetrieval CBRによる適応分類を提案する。
我々の新しいアプローチは、モデルを再トレーニングすることなく、新しいクラスと既存のクラスを効果的に識別できるANNベースの手法に基づいている。
新たなアプローチは単純だが有効であり、分類タスクにおいて最大5%の差(通常はそれより小さい)を持つRFと類似した結果を得たが、新しいサンプル(新しいクラスから)の場合、再トレーニングなしではわずかに減少する。
要約すると、新しい手法はリアルタイムな分類であり、再訓練せずに新しいクラスを分類することができる。
さらに,本手法は,RFや他の機械/深層学習分類法と相補的な解として,集約解として利用することができる。
関連論文リスト
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
既存のメソッドでは、新しいクラスのサンプルをベースクラスに誤分類する傾向があり、新しいクラスのパフォーマンスが低下する。
我々は,新しいクラスの識別性を高めるため,簡易かつ効果的なトレーニング-フレア・カロブラシアン (TEEN) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-08T18:24:08Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
継続学習(CL)は、古いタスクを忘れずに、非定常データストリームで異なるタスク(分類など)を学習することを目的としている。
本稿では,事前学習モデルを用いたCLの簡潔かつ効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-05T12:49:02Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Incremental Deep Neural Network Learning using Classification Confidence
Thresholding [4.061135251278187]
分類のための現代のニューラルネットワークのほとんどは、未知の概念を考慮していない。
本稿では,逐次学習のための素数ニューラルネットワークに対する分類信頼度閾値アプローチを提案する。
論文 参考訳(メタデータ) (2021-06-21T22:46:28Z) - Class-Incremental Learning with Generative Classifiers [6.570917734205559]
本稿では,クラス増分学習のための新しい戦略を提案する。
本提案は,p(x|y)p(y) として分解された合同分布 p(x,y) を学習し,ベイズ則を用いた分類を行うことである。
ここでは,各学習クラスに対して,変分オートエンコーダをトレーニングすることで,この戦略を実証する。
論文 参考訳(メタデータ) (2021-04-20T16:26:14Z) - Learning Adaptive Embedding Considering Incremental Class [55.21855842960139]
CIL(Class-Incremental Learning)は,未知のクラスを逐次生成するストリーミングデータを用いて,信頼性の高いモデルをトレーニングすることを目的としている。
従来のクローズドセット学習とは異なり、CILには2つの大きな課題がある。
新たなクラスが検出された後、以前のデータ全体を使用して再トレーニングすることなく、モデルを更新する必要がある。
論文 参考訳(メタデータ) (2020-08-31T04:11:24Z) - Two-Level Residual Distillation based Triple Network for Incremental
Object Detection [21.725878050355824]
本稿では,より高速なR-CNNに基づく新しいインクリメンタルオブジェクト検出手法を提案する。
従来の学習知識を忘れることなく、新しいクラスでの漸進的なモデル学習を支援するためのアシスタントとして、古いモデルと残留モデルを使用する三重ネットワークである。
論文 参考訳(メタデータ) (2020-07-27T11:04:57Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。