ChartThinker: A Contextual Chain-of-Thought Approach to Optimized Chart Summarization
- URL: http://arxiv.org/abs/2403.11236v2
- Date: Thu, 25 Apr 2024 03:04:14 GMT
- Title: ChartThinker: A Contextual Chain-of-Thought Approach to Optimized Chart Summarization
- Authors: Mengsha Liu, Daoyuan Chen, Yaliang Li, Guian Fang, Ying Shen,
- Abstract summary: This study constructs a large-scale dataset of comprehensive chart-caption pairs and fine-tuning instructions on each chart.
We propose an innovative chart summarization method, ChartThinker, which synthesizes deep analysis based on chains of thought.
Built upon the curated datasets, our trained model consistently exhibits superior performance in chart summarization tasks.
- Score: 32.19963543411396
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Data visualization serves as a critical means for presenting data and mining its valuable insights. The task of chart summarization, through natural language processing techniques, facilitates in-depth data analysis of charts. However, there still are notable deficiencies in terms of visual-language matching and reasoning ability for existing approaches. To address these limitations, this study constructs a large-scale dataset of comprehensive chart-caption pairs and fine-tuning instructions on each chart. Thanks to the broad coverage of various topics and visual styles within this dataset, better matching degree can be achieved from the view of training data. Moreover, we propose an innovative chart summarization method, ChartThinker, which synthesizes deep analysis based on chains of thought and strategies of context retrieval, aiming to improve the logical coherence and accuracy of the generated summaries. Built upon the curated datasets, our trained model consistently exhibits superior performance in chart summarization tasks, surpassing 8 state-of-the-art models over 7 evaluation metrics. Our dataset and codes are publicly accessible.
Related papers
- RealCQA-V2 : Visual Premise Proving A Manual COT Dataset for Charts [2.9201864249313383]
We introduce Visual Premise Proving, a novel task tailored to refine the process of chart question answering.
This approach represents a departure from conventional accuracy-based evaluation methods.
A model adept at reasoning is expected to demonstrate proficiency in both data retrieval and the structural understanding of charts.
arXiv Detail & Related papers (2024-10-29T19:32:53Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
This paper explores the training processes necessary to improve MLLMs' comprehension of charts.
We introduce CHOPINLLM, an MLLM tailored for in-depth chart comprehension.
arXiv Detail & Related papers (2024-07-19T17:58:36Z) - ChartGemma: Visual Instruction-tuning for Chart Reasoning in the Wild [28.643565008567172]
We introduce ChartGemma, a novel chart understanding and reasoning model developed over PaliGemma.
Rather than relying on underlying data tables, ChartGemma is trained on instruction-tuning data generated directly from chart images.
Our simple approach achieves state-of-the-art results across $5$ benchmarks spanning chart summarization, question answering, and fact-checking.
arXiv Detail & Related papers (2024-07-04T22:16:40Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making.
Large foundation models, such as large language models, have revolutionized various natural language processing tasks.
This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis.
arXiv Detail & Related papers (2024-03-18T17:57:09Z) - StructChart: Perception, Structuring, Reasoning for Visual Chart
Understanding [58.38480335579541]
Current chart-related tasks focus on either chart perception which refers to extracting information from the visual charts, or performing reasoning given the extracted data.
In this paper, we aim to establish a unified and label-efficient learning paradigm for joint perception and reasoning tasks.
Experiments are conducted on various chart-related tasks, demonstrating the effectiveness and promising potential for a unified chart perception-reasoning paradigm.
arXiv Detail & Related papers (2023-09-20T12:51:13Z) - ChartSumm: A Comprehensive Benchmark for Automatic Chart Summarization
of Long and Short Summaries [0.26097841018267615]
Automatic chart to text summarization is an effective tool for the visually impaired people.
In this paper, we propose ChartSumm: a large-scale benchmark dataset consisting of a total of 84,363 charts.
arXiv Detail & Related papers (2023-04-26T15:25:24Z) - ChartReader: A Unified Framework for Chart Derendering and Comprehension
without Heuristic Rules [89.75395046894809]
We present ChartReader, a unified framework that seamlessly integrates chart derendering and comprehension tasks.
Our approach includes a transformer-based chart component detection module and an extended pre-trained vision-language model for chart-to-X tasks.
Our proposed framework can significantly reduce the manual effort involved in chart analysis, providing a step towards a universal chart understanding model.
arXiv Detail & Related papers (2023-04-05T00:25:27Z) - Chart-to-Text: A Large-Scale Benchmark for Chart Summarization [9.647079534077472]
We present Chart-to-text, a large-scale benchmark with two datasets and a total of 44,096 charts.
We explain the dataset construction process and analyze the datasets.
arXiv Detail & Related papers (2022-03-12T17:01:38Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.