End-to-End Chart Summarization via Visual Chain-of-Thought in Vision-Language Models
- URL: http://arxiv.org/abs/2502.17589v1
- Date: Mon, 24 Feb 2025 19:13:45 GMT
- Title: End-to-End Chart Summarization via Visual Chain-of-Thought in Vision-Language Models
- Authors: Raymond Choi, Frank Burns, Chase Lawrence,
- Abstract summary: This paper introduces End-to-End Visual Chain-of-Thought (V-CoT) for chart summarization.<n>Our method directly trains an LVLM to process chart images and generate textual summaries in an end-to-end fashion.<n>We incorporate a visual Chain-of-Thought mechanism through instruction fine-tuning, implicitly guiding the LVLM to perform visual reasoning steps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated chart summarization is crucial for enhancing data accessibility and enabling efficient information extraction from visual data. While recent advances in visual-language models (VLMs) have demonstrated promise, existing methods often suffer from limitations in matching the generated summary to the chart data and in reasoning about complex chart patterns. This paper introduces End-to-End Visual Chain-of-Thought (V-CoT) for chart summarization, a novel approach optimized for Large Vision-Language Models (LVLMs). Our method directly trains an LVLM to process chart images and generate textual summaries in an end-to-end fashion, eliminating the need for explicit chart parsing modules. We incorporate a visual Chain-of-Thought mechanism through instruction fine-tuning, implicitly guiding the LVLM to perform visual reasoning steps during summary generation. Evaluated on the large-scale Chart-Sum-QA dataset, our V-CoT method significantly outperforms state-of-the-art baselines across a range of automatic metrics, including BLEU, BLEURT, CIDEr, and CS, and demonstrates superior matching degree and reasoning correctness in human evaluations. Ablation studies and detailed analyses further validate the effectiveness and robustness of our proposed approach, establishing a new benchmark for end-to-end chart summarization.
Related papers
- GraphOmni: A Comprehensive and Extendable Benchmark Framework for Large Language Models on Graph-theoretic Tasks [15.147178364098034]
We present Graph Omni, a benchmark framework for evaluating graph reasoning capabilities of LLMs.
Our findings emphasize that no single serialization or prompting strategy consistently outperforms others.
Motivated by these insights, we propose a reinforcement learning-based approach that dynamically selects the best serialization-prompt pairings.
arXiv Detail & Related papers (2025-04-17T09:01:16Z) - RefChartQA: Grounding Visual Answer on Chart Images through Instruction Tuning [63.599057862999]
RefChartQA is a novel benchmark that integrates Chart Question Answering (ChartQA) with visual grounding.
Our experiments demonstrate that incorporating spatial awareness via grounding improves response accuracy by over 15%.
arXiv Detail & Related papers (2025-03-29T15:50:08Z) - Training Large Recommendation Models via Graph-Language Token Alignment [53.3142545812349]
We propose a novel framework to train Large Recommendation models via Graph-Language Token Alignment.
By aligning item and user nodes from the interaction graph with pretrained LLM tokens, GLTA effectively leverages the reasoning abilities of LLMs.
Furthermore, we introduce Graph-Language Logits Matching (GLLM) to optimize token alignment for end-to-end item prediction.
arXiv Detail & Related papers (2025-02-26T02:19:10Z) - Graph-Based Multimodal Contrastive Learning for Chart Question Answering [11.828192162922436]
This work introduces a novel joint multimodal scene graph framework that explicitly models the relationships among chart components and their underlying structures.
The framework integrates both visual and textual graphs to capture structural and semantic characteristics.
A graph contrastive learning strategy aligns node representations across modalities enabling their seamless incorporation into a transformer decoder as soft prompts.
arXiv Detail & Related papers (2025-01-08T06:27:07Z) - ChartAdapter: Large Vision-Language Model for Chart Summarization [13.499376163294816]
ChartAdapter is a lightweight transformer module designed to bridge the gap between charts and textual summaries.<n>By integrating ChartAdapter with an LLM, we enable end-to-end training and efficient chart summarization.
arXiv Detail & Related papers (2024-12-30T05:07:34Z) - RealCQA-V2 : Visual Premise Proving A Manual COT Dataset for Charts [2.9201864249313383]
We introduce Visual Premise Proving, a novel task tailored to refine the process of chart question answering.
This approach represents a departure from conventional accuracy-based evaluation methods.
A model adept at reasoning is expected to demonstrate proficiency in both data retrieval and the structural understanding of charts.
arXiv Detail & Related papers (2024-10-29T19:32:53Z) - Charting the Future: Using Chart Question-Answering for Scalable Evaluation of LLM-Driven Data Visualizations [7.32619928577074]
We propose a novel framework that leverages Visual Question Answering (VQA) models to automate the evaluation of LLM-generated data visualizations.
Our results indicate that LLM-generated charts do not match the accuracy of the original non-LLM-generated charts based on VQA performance measures.
arXiv Detail & Related papers (2024-09-27T14:02:48Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
This paper explores the training processes necessary to improve MLLMs' comprehension of charts.
We introduce CHOPINLLM, an MLLM tailored for in-depth chart comprehension.
arXiv Detail & Related papers (2024-07-19T17:58:36Z) - ChartThinker: A Contextual Chain-of-Thought Approach to Optimized Chart Summarization [32.19963543411396]
This study constructs a large-scale dataset of comprehensive chart-caption pairs and fine-tuning instructions on each chart.
We propose an innovative chart summarization method, ChartThinker, which synthesizes deep analysis based on chains of thought.
Built upon the curated datasets, our trained model consistently exhibits superior performance in chart summarization tasks.
arXiv Detail & Related papers (2024-03-17T14:49:09Z) - StructChart: On the Schema, Metric, and Augmentation for Visual Chart Understanding [54.45681512355684]
Current chart-related tasks focus on either chart perception that extracts information from the visual charts, or chart reasoning given the extracted data.<n>We introduce StructChart, a novel framework that leverages Structured Triplet Representations (STR) to achieve a unified and label-efficient approach.
arXiv Detail & Related papers (2023-09-20T12:51:13Z) - Enhanced Chart Understanding in Vision and Language Task via Cross-modal
Pre-training on Plot Table Pairs [71.55796212450055]
We introduce ChartT5, a V+L model that learns how to interpret table information from chart images via cross-modal pre-training on plot table pairs.
Specifically, we propose two novel pre-training objectives: Masked Header Prediction (MHP) and Masked Value Prediction (MVP)
arXiv Detail & Related papers (2023-05-29T22:29:03Z) - ChartReader: A Unified Framework for Chart Derendering and Comprehension
without Heuristic Rules [89.75395046894809]
We present ChartReader, a unified framework that seamlessly integrates chart derendering and comprehension tasks.
Our approach includes a transformer-based chart component detection module and an extended pre-trained vision-language model for chart-to-X tasks.
Our proposed framework can significantly reduce the manual effort involved in chart analysis, providing a step towards a universal chart understanding model.
arXiv Detail & Related papers (2023-04-05T00:25:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.