FORCE: Dataset and Method for Intuitive Physics Guided Human-object Interaction
- URL: http://arxiv.org/abs/2403.11237v1
- Date: Sun, 17 Mar 2024 14:52:05 GMT
- Title: FORCE: Dataset and Method for Intuitive Physics Guided Human-object Interaction
- Authors: Xiaohan Zhang, Bharat Lal Bhatnagar, Sebastian Starke, Ilya Petrov, Vladimir Guzov, Helisa Dhamo, Eduardo PĂ©rez-Pellitero, Gerard Pons-Moll,
- Abstract summary: We introduce the FORCE model, a kinematic approach for diverse, nuanced human-object interactions by modeling physical attributes.
Our key insight is that human motion is dictated by the interrelation between the force exerted by the human and the perceived resistance.
Experiments also demonstrate incorporating human force facilitates learning multi-class motion.
- Score: 39.810254311528354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interactions between human and objects are influenced not only by the object's pose and shape, but also by physical attributes such as object mass and surface friction. They introduce important motion nuances that are essential for diversity and realism. Despite advancements in recent kinematics-based methods, this aspect has been overlooked. Generating nuanced human motion presents two challenges. First, it is non-trivial to learn from multi-modal human and object information derived from both the physical and non-physical attributes. Second, there exists no dataset capturing nuanced human interactions with objects of varying physical properties, hampering model development. This work addresses the gap by introducing the FORCE model, a kinematic approach for synthesizing diverse, nuanced human-object interactions by modeling physical attributes. Our key insight is that human motion is dictated by the interrelation between the force exerted by the human and the perceived resistance. Guided by a novel intuitive physics encoding, the model captures the interplay between human force and resistance. Experiments also demonstrate incorporating human force facilitates learning multi-class motion. Accompanying our model, we contribute the FORCE dataset. It features diverse, different-styled motion through interactions with varying resistances.
Related papers
- HUMOS: Human Motion Model Conditioned on Body Shape [54.20419874234214]
We introduce a new approach to develop a generative motion model based on body shape.
We show that it's possible to train this model using unpaired data.
The resulting model generates diverse, physically plausible, and dynamically stable human motions.
arXiv Detail & Related papers (2024-09-05T23:50:57Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamer is a physics-based approach that endows static 3D objects with interactive dynamics.
We present our approach on diverse examples of elastic objects and evaluate the realism of the synthesized interactions through a user study.
arXiv Detail & Related papers (2024-04-19T17:41:05Z) - in2IN: Leveraging individual Information to Generate Human INteractions [29.495166514135295]
We introduce in2IN, a novel diffusion model for human-human motion generation conditioned on individual descriptions.
We also propose DualMDM, a model composition technique that combines the motions generated with in2IN and the motions generated by a single-person motion prior pre-trained on HumanML3D.
arXiv Detail & Related papers (2024-04-15T17:59:04Z) - THOR: Text to Human-Object Interaction Diffusion via Relation Intervention [51.02435289160616]
We propose a novel Text-guided Human-Object Interaction diffusion model with Relation Intervention (THOR)
In each diffusion step, we initiate text-guided human and object motion and then leverage human-object relations to intervene in object motion.
We construct Text-BEHAVE, a Text2HOI dataset that seamlessly integrates textual descriptions with the currently largest publicly available 3D HOI dataset.
arXiv Detail & Related papers (2024-03-17T13:17:25Z) - CG-HOI: Contact-Guided 3D Human-Object Interaction Generation [29.3564427724612]
We propose CG-HOI, the first method to generate dynamic 3D human-object interactions (HOIs) from text.
We model the motion of both human and object in an interdependent fashion, as semantically rich human motion rarely happens in isolation.
We show that our joint contact-based human-object interaction approach generates realistic and physically plausible sequences.
arXiv Detail & Related papers (2023-11-27T18:59:10Z) - Object Motion Guided Human Motion Synthesis [22.08240141115053]
We study the problem of full-body human motion synthesis for the manipulation of large-sized objects.
We propose Object MOtion guided human MOtion synthesis (OMOMO), a conditional diffusion framework.
We develop a novel system that captures full-body human manipulation motions by simply attaching a smartphone to the object being manipulated.
arXiv Detail & Related papers (2023-09-28T08:22:00Z) - Full-Body Articulated Human-Object Interaction [61.01135739641217]
CHAIRS is a large-scale motion-captured f-AHOI dataset consisting of 16.2 hours of versatile interactions.
CHAIRS provides 3D meshes of both humans and articulated objects during the entire interactive process.
By learning the geometrical relationships in HOI, we devise the very first model that leverage human pose estimation.
arXiv Detail & Related papers (2022-12-20T19:50:54Z) - Object Properties Inferring from and Transfer for Human Interaction
Motions [51.896592493436984]
In this paper, we present a fine-grained action recognition method that learns to infer object properties from human interaction motion alone.
We collect a large number of videos and 3D skeletal motions of the performing actors using an inertial motion capture device.
In particular, we learn to identify the interacting object, by estimating its weight, or its fragility or delicacy.
arXiv Detail & Related papers (2020-08-20T14:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.