論文の概要: Uncertainty-Aware Pseudo-Label Filtering for Source-Free Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2403.11256v1
- Date: Sun, 17 Mar 2024 16:19:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 17:46:37.427902
- Title: Uncertainty-Aware Pseudo-Label Filtering for Source-Free Unsupervised Domain Adaptation
- Title(参考訳): 非教師なし領域適応のための不確実性を考慮した擬似ラベルフィルタ
- Authors: Xi Chen, Haosen Yang, Huicong Zhang, Hongxun Yao, Xiatian Zhu,
- Abstract要約: Source-free unsupervised domain adapt (SFUDA) は、訓練済みのソースモデルを、ソースデータにアクセスすることなく、ラベルなしのターゲットドメインで利用できるようにすることを目的としている。
本稿では,不確かさを意識したPseudo-label-filtering Adaptation (UPA) という手法を提案する。
- 参考スコア(独自算出の注目度): 45.53185386883692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source-free unsupervised domain adaptation (SFUDA) aims to enable the utilization of a pre-trained source model in an unlabeled target domain without access to source data. Self-training is a way to solve SFUDA, where confident target samples are iteratively selected as pseudo-labeled samples to guide target model learning. However, prior heuristic noisy pseudo-label filtering methods all involve introducing extra models, which are sensitive to model assumptions and may introduce additional errors or mislabeling. In this work, we propose a method called Uncertainty-aware Pseudo-label-filtering Adaptation (UPA) to efficiently address this issue in a coarse-to-fine manner. Specially, we first introduce a sample selection module named Adaptive Pseudo-label Selection (APS), which is responsible for filtering noisy pseudo labels. The APS utilizes a simple sample uncertainty estimation method by aggregating knowledge from neighboring samples and confident samples are selected as clean pseudo-labeled. Additionally, we incorporate Class-Aware Contrastive Learning (CACL) to mitigate the memorization of pseudo-label noise by learning robust pair-wise representation supervised by pseudo labels. Through extensive experiments conducted on three widely used benchmarks, we demonstrate that our proposed method achieves competitive performance on par with state-of-the-art SFUDA methods. Code is available at https://github.com/chenxi52/UPA.
- Abstract(参考訳): Source-free unsupervised domain adapt (SFUDA) は、訓練済みのソースモデルを、ソースデータにアクセスすることなく、ラベルなしのターゲットドメインで利用できるようにすることを目的としている。
自己学習はSFUDAを解く方法であり、信頼度の高い対象サンプルを疑似ラベル付きサンプルとして反復的に選択し、対象モデル学習をガイドする。
しかし、事前ヒューリスティックな擬似ラベルフィルタリング手法は、いずれもモデル仮定に敏感な追加モデルを導入し、追加のエラーや誤ラベルを導入する可能性がある。
本研究では,不確かさを意識したPseudo-label-filtering Adaptation (UPA) という手法を提案する。
具体的には、まず、雑音の多い擬似ラベルをフィルタリングするAdaptive Pseudo-label Selection (APS)というサンプル選択モジュールを導入する。
APSは、近隣のサンプルからの知識を集約して単純なサンプル不確実性推定法を利用し、自信のあるサンプルをクリーンな擬似ラベルとして選択する。
さらに, 擬似ラベルによるペアワイド表現を学習することで, 擬似ラベル雑音の記憶を緩和するために, クラス・アウェア・コントラシティブ・ラーニング(CACL)を取り入れた。
広範に使用されている3つのベンチマークを用いて,提案手法が最先端のSFUDA手法と同等の競争性能を達成できることを実証した。
コードはhttps://github.com/chenxi52/UPA.comで入手できる。
関連論文リスト
- Less is More: Pseudo-Label Filtering for Continual Test-Time Adaptation [13.486951040331899]
連続的テスト時間適応(CTTA)は、ソースデータにアクセスすることなく、テストフェーズ中に対象ドメインのシーケンスに事前訓練されたモデルを適用することを目的としている。
既存の方法は、すべてのサンプルに対して擬似ラベルを構築し、自己学習を通じてモデルを更新することに依存している。
擬似ラベルの品質を向上させるために擬似ラベルフィルタ(PLF)を提案する。
論文 参考訳(メタデータ) (2024-06-03T04:09:36Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
テスト時間適応(TTA)は、推論中にトレーニング済みのソースモデルをターゲットドメインに継続的に適応させるタスクである。
1つの一般的なアプローチは、推定擬似ラベルによるクロスエントロピー損失を伴う微調整モデルである。
本研究は, 各試料の分類誤差を最小化することで, クロスエントロピー損失の脆弱性がラベルノイズを引き起こすことを明らかにした。
本稿では,プロトタイプ中心の損失計算を特徴とする新しいDPL法を提案する。
論文 参考訳(メタデータ) (2024-01-15T03:33:39Z) - Exploiting Low-confidence Pseudo-labels for Source-free Object Detection [54.98300313452037]
Source-free Object Detection (SFOD) は、ラベル付きソースデータにアクセスすることなく、未ラベルのターゲットドメインにソーストレーニングされた検出器を適応することを目的としている。
現在のSFOD法は適応相におけるしきい値に基づく擬似ラベル手法を用いる。
疑似ラベルを最大限に活用するために,高信頼度と低信頼度しきい値を導入する手法を提案する。
論文 参考訳(メタデータ) (2023-10-19T12:59:55Z) - Towards Self-Adaptive Pseudo-Label Filtering for Semi-Supervised
Learning [13.02771721554445]
擬似ラベルの品質向上を目的とした自己適応型擬似ラベルフィルタ(SPF)を提案する。
オンライン混合モデルを用いて、各擬似ラベル付きサンプルをその後部で重み付けし、信頼性分布を考慮した。
我々のSPFは、手動チューニングなしでディープニューラルネットワークとともに進化します。
論文 参考訳(メタデータ) (2023-09-18T13:57:16Z) - Refined Pseudo labeling for Source-free Domain Adaptive Object Detection [9.705172026751294]
ソースフリーDは、未ラベルのターゲットデータのみを用いて、ソーストレーニングされた検出器をターゲット領域に適応させる。
既存のソースフリーD手法は、通常擬似ラベリングを利用しており、性能は信頼しきい値の選択に大きく依存している。
本稿では,各カテゴリに対して適切な閾値を適応的に提供する適応しきい値推定モジュールを提案する。
論文 参考訳(メタデータ) (2023-03-07T08:31:42Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Uncertainty-aware Mean Teacher for Source-free Unsupervised Domain
Adaptive 3D Object Detection [6.345037597566315]
擬似ラベルに基づく自己学習アプローチは、ソースフリーな教師なしドメイン適応の一般的な方法である。
本研究では,学習中に誤字を暗黙的にフィルタリングする不確実性認識型平均教師フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-29T18:17:09Z) - Adaptive Pseudo-Label Refinement by Negative Ensemble Learning for
Source-Free Unsupervised Domain Adaptation [35.728603077621564]
既存のUnsupervised Domain Adaptation (UDA)メソッドは、トレーニング中にソースとターゲットのドメインデータを同時に利用できると仮定する。
訓練済みのソースモデルは、よく知られたドメインシフトの問題により、ターゲットに対して性能が悪くても、常に利用可能であると考えられている。
適応型ノイズフィルタリングと擬似ラベル改良に取り組むための統一手法を提案する。
論文 参考訳(メタデータ) (2021-03-29T22:18:34Z) - Self-Supervised Noisy Label Learning for Source-Free Unsupervised Domain
Adaptation [87.60688582088194]
新規な自己監督雑音ラベル学習法を提案する。
本手法は最新の結果を容易に達成でき、他の手法を非常に大きなマージンで超えることができる。
論文 参考訳(メタデータ) (2021-02-23T10:51:45Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) は一般的な SSL アプローチで、この制約はありませんが、当初の処方では比較的不十分です。
PLは不整合モデルからの誤った高い信頼度予測により性能が低下していると論じる。
そこで本研究では,疑似ラベリング精度を向上させるための不確実性認識型擬似ラベル選択(ups)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-15T23:29:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。