Enhancing Bandwidth Efficiency for Video Motion Transfer Applications using Deep Learning Based Keypoint Prediction
- URL: http://arxiv.org/abs/2403.11337v1
- Date: Sun, 17 Mar 2024 20:36:43 GMT
- Title: Enhancing Bandwidth Efficiency for Video Motion Transfer Applications using Deep Learning Based Keypoint Prediction
- Authors: Xue Bai, Tasmiah Haque, Sumit Mohan, Yuliang Cai, Byungheon Jeong, Adam Halasz, Srinjoy Das,
- Abstract summary: We propose a deep learning based novel prediction framework for enhanced bandwidth reduction in motion transfer enabled video applications.
For real-time applications, our results show the effectiveness of our proposed architecture by enabling up to 2x additional bandwidth reduction.
- Score: 4.60378493357739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a deep learning based novel prediction framework for enhanced bandwidth reduction in motion transfer enabled video applications such as video conferencing, virtual reality gaming and privacy preservation for patient health monitoring. To model complex motion, we use the First Order Motion Model (FOMM) that represents dynamic objects using learned keypoints along with their local affine transformations. Keypoints are extracted by a self-supervised keypoint detector and organized in a time series corresponding to the video frames. Prediction of keypoints, to enable transmission using lower frames per second on the source device, is performed using a Variational Recurrent Neural Network (VRNN). The predicted keypoints are then synthesized to video frames using an optical flow estimator and a generator network. This efficacy of leveraging keypoint based representations in conjunction with VRNN based prediction for both video animation and reconstruction is demonstrated on three diverse datasets. For real-time applications, our results show the effectiveness of our proposed architecture by enabling up to 2x additional bandwidth reduction over existing keypoint based video motion transfer frameworks without significantly compromising video quality.
Related papers
- VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision [59.632286735304156]
It is more efficient to enhance/analyze the coded representations directly without decoding them into pixels.
We propose a versatile neural video coding (VNVC) framework, which targets learning compact representations to support both reconstruction and direct enhancement/analysis.
arXiv Detail & Related papers (2023-06-19T03:04:57Z) - ReBotNet: Fast Real-time Video Enhancement [59.08038313427057]
Most restoration networks are slow, have high computational bottleneck, and can't be used for real-time video enhancement.
In this work, we design an efficient and fast framework to perform real-time enhancement for practical use-cases like live video calls and video streams.
To evaluate our method, we emulate two new datasets that real-world video call and streaming scenarios, and show extensive results on multiple datasets where ReBotNet outperforms existing approaches with lower computations, reduced memory requirements, and faster inference time.
arXiv Detail & Related papers (2023-03-23T17:58:05Z) - Dynamic Appearance: A Video Representation for Action Recognition with
Joint Training [11.746833714322154]
We introduce a new concept, Dynamic Appearance (DA), summarizing the appearance information relating to movement in a video.
We consider distilling the dynamic appearance from raw video data as a means of efficient video understanding.
We provide extensive experimental results on four action recognition benchmarks.
arXiv Detail & Related papers (2022-11-23T07:16:16Z) - Motion-aware Dynamic Graph Neural Network for Video Compressive Sensing [14.67994875448175]
Video snapshot imaging (SCI) utilizes a 2D detector to capture sequential video frames and compress them into a single measurement.
Most existing reconstruction methods are incapable of efficiently capturing long-range spatial and temporal dependencies.
We propose a flexible and robust approach based on the graph neural network (GNN) to efficiently model non-local interactions between pixels in space and time regardless of the distance.
arXiv Detail & Related papers (2022-03-01T12:13:46Z) - Wide and Narrow: Video Prediction from Context and Motion [54.21624227408727]
We propose a new framework to integrate these complementary attributes to predict complex pixel dynamics through deep networks.
We present global context propagation networks that aggregate the non-local neighboring representations to preserve the contextual information over the past frames.
We also devise local filter memory networks that generate adaptive filter kernels by storing the motion of moving objects in the memory.
arXiv Detail & Related papers (2021-10-22T04:35:58Z) - Motion-Attentive Transition for Zero-Shot Video Object Segmentation [99.44383412488703]
We present a Motion-Attentive Transition Network (MATNet) for zero-shot object segmentation.
An asymmetric attention block, called Motion-Attentive Transition (MAT), is designed within a two-stream encoder.
In this way, the encoder becomes deeply internative, allowing for closely hierarchical interactions between object motion and appearance.
arXiv Detail & Related papers (2020-03-09T16:58:42Z) - Dynamic Inference: A New Approach Toward Efficient Video Action
Recognition [69.9658249941149]
Action recognition in videos has achieved great success recently, but it remains a challenging task due to the massive computational cost.
We propose a general dynamic inference idea to improve inference efficiency by leveraging the variation in the distinguishability of different videos.
arXiv Detail & Related papers (2020-02-09T11:09:56Z) - An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond
Feature and Signal [99.49099501559652]
Video Coding for Machine (VCM) aims to bridge the gap between visual feature compression and classical video coding.
We employ a conditional deep generation network to reconstruct video frames with the guidance of learned motion pattern.
By learning to extract sparse motion pattern via a predictive model, the network elegantly leverages the feature representation to generate the appearance of to-be-coded frames.
arXiv Detail & Related papers (2020-01-09T14:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.