StainDiffuser: MultiTask Dual Diffusion Model for Virtual Staining
- URL: http://arxiv.org/abs/2403.11340v1
- Date: Sun, 17 Mar 2024 20:47:52 GMT
- Title: StainDiffuser: MultiTask Dual Diffusion Model for Virtual Staining
- Authors: Tushar Kataria, Beatrice Knudsen, Shireen Y. Elhabian,
- Abstract summary: Hematoxylin and Eosin (H&E) staining is the most commonly used for disease diagnosis and tumor recurrence tracking.
Deep learning models have made Image-to-Image (I2I) translation a key research area, reducing the need for expensive physical staining processes.
We propose StainDiffuser, a novel dual diffusion architecture for virtual staining that converges under a limited training budget.
- Score: 1.9029890402585894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hematoxylin and Eosin (H&E) staining is the most commonly used for disease diagnosis and tumor recurrence tracking. Hematoxylin excels at highlighting nuclei, whereas eosin stains the cytoplasm. However, H&E stain lacks details for differentiating different types of cells relevant to identifying the grade of the disease or response to specific treatment variations. Pathologists require special immunohistochemical (IHC) stains that highlight different cell types. These stains help in accurately identifying different regions of disease growth and their interactions with the cell's microenvironment. The advent of deep learning models has made Image-to-Image (I2I) translation a key research area, reducing the need for expensive physical staining processes. Pix2Pix and CycleGAN are still the most commonly used methods for virtual staining applications. However, both suffer from hallucinations or staining irregularities when H&E stain has less discriminate information about the underlying cells IHC needs to highlight (e.g.,CD3 lymphocytes). Diffusion models are currently the state-of-the-art models for image generation and conditional generation tasks. However, they require extensive and diverse datasets (millions of samples) to converge, which is less feasible for virtual staining applications.Inspired by the success of multitask deep learning models for limited dataset size, we propose StainDiffuser, a novel multitask dual diffusion architecture for virtual staining that converges under a limited training budget. StainDiffuser trains two diffusion processes simultaneously: (a) generation of cell-specific IHC stain from H&E and (b) H&E-based cell segmentation using coarse segmentation only during training. Our results show that StainDiffuser produces high-quality results for easier (CK8/18,epithelial marker) and difficult stains(CD3, Lymphocytes).
Related papers
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
Diffusion Model (DM) has become a leading method in generating synthetic medical images, but it suffers from a critical twofold bias.
We propose FairSkin, a novel DM framework that mitigates these biases through a three-level resampling mechanism.
Our approach significantly improves the diversity and quality of generated images, contributing to more equitable skin disease detection in clinical settings.
arXiv Detail & Related papers (2024-10-29T21:37:03Z) - VIMs: Virtual Immunohistochemistry Multiplex staining via Text-to-Stain Diffusion Trained on Uniplex Stains [0.9920087186610302]
IHC stains are crucial in pathology practice for resolving complex diagnostic questions and guiding patient treatment decisions.
Small biopsies often lack sufficient tissue for multiple stains while preserving material for subsequent molecular testing.
VIMs is the first model to address this need, leveraging a large vision-language single-step diffusion model for virtual IHC multiplexing.
arXiv Detail & Related papers (2024-07-26T22:23:45Z) - Structural Cycle GAN for Virtual Immunohistochemistry Staining of Gland
Markers in the Colon [1.741980945827445]
Hematoxylin and Eosin (H&E) staining is one of the most frequently used stains for disease analysis, diagnosis, and grading.
Pathologists do need differentchemical (IHC) stains to analyze specific structures or cells.
Hematoxylin and Eosin (H&E) staining is one of the most frequently used stains for disease analysis, diagnosis, and grading.
arXiv Detail & Related papers (2023-08-25T05:24:23Z) - A Laplacian Pyramid Based Generative H&E Stain Augmentation Network [5.841841666625825]
Generative Stain Augmentation Network (G-SAN) is a GAN-based framework that augments a collection of cell images with simulated stain variations.
Using G-SAN-augmented training data provides on average 15.7% improvement in F1 score and 7.3% improvement in panoptic quality.
arXiv Detail & Related papers (2023-05-23T17:43:18Z) - Unsupervised Deep Digital Staining For Microscopic Cell Images Via
Knowledge Distillation [46.006296303296544]
It is difficult to obtain large-scale stained/unstained cell image pairs in practice.
We propose a novel unsupervised deep learning framework for the digital staining of cell images.
We show that the proposed unsupervised deep staining method can generate stained images with more accurate positions and shapes of the cell targets.
arXiv Detail & Related papers (2023-03-03T16:26:38Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Region-guided CycleGANs for Stain Transfer in Whole Slide Images [6.704730171977661]
We propose an extension to CycleGANs in the form of a region of interest discriminator.
We present a use case on whole slide images, where an IHC stain provides an experimentally generated signal for metastatic cells.
arXiv Detail & Related papers (2022-08-26T19:12:49Z) - Virtual stain transfer in histology via cascaded deep neural networks [2.309018557701645]
We demonstrate a virtual stain transfer framework via a cascaded deep neural network (C-DNN)
Unlike a single neural network structure which only takes one stain type as input to digitally output images of another stain type, C-DNN first uses virtual staining to transform autofluorescence microscopy images into H&E.
We successfully transferred the H&E-stained tissue images into virtual PAS (periodic acid-Schiff) stain.
arXiv Detail & Related papers (2022-07-14T00:43:18Z) - RandStainNA: Learning Stain-Agnostic Features from Histology Slides by
Bridging Stain Augmentation and Normalization [45.81689497433507]
Two proposals, namely stain normalization (SN) and stain augmentation (SA), have been spotlighted to reduce the generalization error.
To address the problems, we unify SN and SA with a novel RandStainNA scheme.
The RandStainNA constrains variable stain styles in a practicable range to train a stain agnostic deep learning model.
arXiv Detail & Related papers (2022-06-25T16:43:59Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
We present a machine learning pipeline to segment white blood cell pixels in hyperspectral images of biopsy cores.
These cells are clinically important for diagnosis, but some prior work has struggled to incorporate them due to difficulty obtaining precise pixel labels.
arXiv Detail & Related papers (2022-03-23T00:58:27Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.