A Novel Paradigm Boosting Translation Capabilities of Large Language Models
- URL: http://arxiv.org/abs/2403.11430v2
- Date: Mon, 15 Apr 2024 06:34:04 GMT
- Title: A Novel Paradigm Boosting Translation Capabilities of Large Language Models
- Authors: Jiaxin Guo, Hao Yang, Zongyao Li, Daimeng Wei, Hengchao Shang, Xiaoyu Chen,
- Abstract summary: The paper proposes a novel paradigm consisting of three stages: Secondary Pre-training using Extensive Monolingual Data, Continual Pre-training with Interlinear Text Format Documents, and Leveraging Source-Language Consistent Instruction for Supervised Fine-Tuning.
Experimental results conducted using the Llama2 model, particularly on Chinese-Llama2, demonstrate the improved translation capabilities of LLMs.
- Score: 11.537249547487045
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a study on strategies to enhance the translation capabilities of large language models (LLMs) in the context of machine translation (MT) tasks. The paper proposes a novel paradigm consisting of three stages: Secondary Pre-training using Extensive Monolingual Data, Continual Pre-training with Interlinear Text Format Documents, and Leveraging Source-Language Consistent Instruction for Supervised Fine-Tuning. Previous research on LLMs focused on various strategies for supervised fine-tuning (SFT), but their effectiveness has been limited. While traditional machine translation approaches rely on vast amounts of parallel bilingual data, our paradigm highlights the importance of using smaller sets of high-quality bilingual data. We argue that the focus should be on augmenting LLMs' cross-lingual alignment abilities during pre-training rather than solely relying on extensive bilingual data during SFT. Experimental results conducted using the Llama2 model, particularly on Chinese-Llama2 after monolingual augmentation, demonstrate the improved translation capabilities of LLMs. A significant contribution of our approach lies in Stage2: Continual Pre-training with Interlinear Text Format Documents, which requires less than 1B training data, making our method highly efficient. Additionally, in Stage3, we observed that setting instructions consistent with the source language benefits the supervised fine-tuning process. Experimental results demonstrate that our approach surpasses previous work and achieves superior performance compared to models such as NLLB-54B and GPT3.5-text-davinci-003, despite having a significantly smaller parameter count of only 7B or 13B. This achievement establishes our method as a pioneering strategy in the field of machine translation.
Related papers
- Quality or Quantity? On Data Scale and Diversity in Adapting Large Language Models for Low-Resource Translation [62.202893186343935]
We explore what it would take to adapt Large Language Models for low-resource languages.
We show that parallel data is critical during both pre-training andSupervised Fine-Tuning (SFT)
Our experiments with three LLMs across two low-resourced language groups reveal consistent trends, underscoring the generalizability of our findings.
arXiv Detail & Related papers (2024-08-23T00:59:38Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - Improving Language Models Trained on Translated Data with Continual Pre-Training and Dictionary Learning Analysis [3.16714407449467]
We investigate the role of translation and synthetic data in training language models.
We translate TinyStories, a dataset of 2.2M short stories for 3-4 year old children, from English to Arabic using the open NLLB-3B MT model.
To rectify these issues, we pre-train the models with a small dataset of synthesized high-quality Arabic stories.
arXiv Detail & Related papers (2024-05-23T07:53:04Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
We propose a question alignment framework to bridge the gap between large language models' English and non-English performance.
Experiment results show it can boost multilingual performance across diverse reasoning scenarios, model families, and sizes.
We analyze representation space, generated response and data scales, and reveal how question translation training strengthens language alignment within LLMs.
arXiv Detail & Related papers (2024-05-02T14:49:50Z) - A Preference-driven Paradigm for Enhanced Translation with Large Language Models [33.51585908894444]
Large language models (LLMs) can achieve remarkable translation performance using only a small amount of parallel data.
SFT simply instructs the model to imitate the reference translations at the token level, making it vulnerable to the noise present in the references.
We propose a preference-based approach built upon the Plackett-Luce model to overcome this plateau.
arXiv Detail & Related papers (2024-04-17T11:52:47Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
Large language models (LLMs) have significantly advanced various natural language processing (NLP) tasks.
Recent research indicates that moderately-sized LLMs often outperform larger ones after task-specific fine-tuning.
This study focuses on adapting LLMs for document-level machine translation (DocMT) for specific language pairs.
arXiv Detail & Related papers (2024-01-12T09:29:13Z) - A Paradigm Shift in Machine Translation: Boosting Translation
Performance of Large Language Models [27.777372498182864]
We propose a novel fine-tuning approach for Generative Large Language Models (LLMs)
Our approach consists of two fine-tuning stages: initial fine-tuning on monolingual data followed by subsequent fine-tuning on a small set of high-quality parallel data.
Based on LLaMA-2 as our underlying model, our results show that the model can achieve an average improvement of more than 12 BLEU and 12 COMET over its zero-shot performance.
arXiv Detail & Related papers (2023-09-20T22:53:15Z) - Beyond Triplet: Leveraging the Most Data for Multimodal Machine
Translation [53.342921374639346]
Multimodal machine translation aims to improve translation quality by incorporating information from other modalities, such as vision.
Previous MMT systems mainly focus on better access and use of visual information and tend to validate their methods on image-related datasets.
This paper establishes new methods and new datasets for MMT.
arXiv Detail & Related papers (2022-12-20T15:02:38Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
We propose a new learning objective for Multilingual neural machine translation (MNMT) based on distributionally robust optimization.
We show how to practically optimize this objective for large translation corpora using an iterated best response scheme.
Our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
arXiv Detail & Related papers (2021-09-09T03:48:35Z) - Multi-task Learning for Multilingual Neural Machine Translation [32.81785430242313]
We propose a multi-task learning framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data.
We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages.
arXiv Detail & Related papers (2020-10-06T06:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.