Experimental Quantum Byzantine Agreement on a Three-User Quantum Network with Integrated Photonics
- URL: http://arxiv.org/abs/2403.11441v2
- Date: Tue, 27 Aug 2024 14:52:38 GMT
- Title: Experimental Quantum Byzantine Agreement on a Three-User Quantum Network with Integrated Photonics
- Authors: Xu Jing, Cheng Qian, Chen-Xun Weng, Bing-Hong Li, Zhe Chen, Chen-Quan Wang, Jie Tang, Xiao-Wen Gu, Yue-Chan Kong, Tang-Sheng Chen, Hua-Lei Yin, Dong Jiang, Bin Niu, Liang-Liang Lu,
- Abstract summary: Building quantum communication networks in a scalable and cost-effective way is essential for their widespread adoption.
Here, we establish a polarization entanglement-based fully connected network, which features an ultrabright integrated Bragg reflection waveguide quantum source.
We provide the first experimental implementation of source-independent quantum digital signatures using imperfect keys circumventing the necessity for private amplification.
- Score: 13.10577231578478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum communication networks are crucial for both secure communication and cryptographic networked tasks. Building quantum communication networks in a scalable and cost-effective way is essential for their widespread adoption, among which a stable and miniaturized high-quality quantum light source is a key component. Here, we establish a complete polarization entanglement-based fully connected network, which features an ultrabright integrated Bragg reflection waveguide quantum source, managed by an untrusted service provider, and a streamlined polarization analysis module, which requires only one single-photon detector for each end user. We perform a continuously working quantum entanglement distribution and create correlated bit strings between users. Within the framework of one-time universal hashing, we provide the first experimental implementation of source-independent quantum digital signatures using imperfect keys circumventing the necessity for private amplification. More importantly, we further beat the 1/3 fault-tolerance bound in Byzantine agreement, achieving unconditional security without relying on sophisticated techniques. Our results offer an affordable and practical route for addressing consensus challenges within the emerging quantum network landscape.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Unconditionally secure key distribution without quantum channel [0.76146285961466]
Currently, the quantum scheme stands as the only known method for achieving unconditionally secure key distribution.
We propose another key distribution scheme with unconditional security, named probability key distribution, that promises users between any two distances to generate a fixed and high secret key rate.
Non-local entangled states can be generated, identified and measured in the equivalent virtual protocol and can be used to extract secret keys.
arXiv Detail & Related papers (2024-08-24T15:13:14Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Entangled Pair Resource Allocation under Uncertain Fidelity Requirements [59.83361663430336]
In quantum networks, effective entanglement routing facilitates communication between quantum source and quantum destination nodes.
We propose a resource allocation model for entangled pairs and an entanglement routing model with a fidelity guarantee.
Our proposed model can reduce the total cost by at least 20% compared to the baseline model.
arXiv Detail & Related papers (2023-04-10T07:16:51Z) - Hybrid Error-Management Strategies in Quantum Repeater Networks [0.7036032466145112]
We address the performance of a quantum network capable of quantum error correction and entanglement purification.
Results show that one should distribute Bell pairs as fast as possible while balancing the deployment of fidelity enhancement.
arXiv Detail & Related papers (2023-03-18T00:26:01Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Scalable authentication and optimal flooding in a quantum network [2.604279577944016]
We consider two related protocols, their experimental demonstrations on an 8-user quantum network test-bed.
First, an authentication transfer protocol to manage a fundamental limitation of quantum communication.
Second, when end users quantify their trust in intermediary nodes, our flooding protocol can be used to improve both end-to-end communication speeds and increase security against malicious nodes.
arXiv Detail & Related papers (2021-01-28T19:00:07Z) - Quantum key distribution with entangled photons generated on-demand by a
quantum dot [0.0]
Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters.
We experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches.
Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments.
arXiv Detail & Related papers (2020-07-24T18:21:19Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.