Bridging 3D Gaussian and Mesh for Freeview Video Rendering
- URL: http://arxiv.org/abs/2403.11453v1
- Date: Mon, 18 Mar 2024 04:01:26 GMT
- Title: Bridging 3D Gaussian and Mesh for Freeview Video Rendering
- Authors: Yuting Xiao, Xuan Wang, Jiafei Li, Hongrui Cai, Yanbo Fan, Nan Xue, Minghui Yang, Yujun Shen, Shenghua Gao,
- Abstract summary: GauMesh bridges the 3D Gaussian and Mesh for modeling and rendering the dynamic scenes.
We show that our approach adapts the appropriate type of primitives to represent the different parts of the dynamic scene.
- Score: 57.21847030980905
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This is only a preview version of GauMesh. Recently, primitive-based rendering has been proven to achieve convincing results in solving the problem of modeling and rendering the 3D dynamic scene from 2D images. Despite this, in the context of novel view synthesis, each type of primitive has its inherent defects in terms of representation ability. It is difficult to exploit the mesh to depict the fuzzy geometry. Meanwhile, the point-based splatting (e.g. the 3D Gaussian Splatting) method usually produces artifacts or blurry pixels in the area with smooth geometry and sharp textures. As a result, it is difficult, even not impossible, to represent the complex and dynamic scene with a single type of primitive. To this end, we propose a novel approach, GauMesh, to bridge the 3D Gaussian and Mesh for modeling and rendering the dynamic scenes. Given a sequence of tracked mesh as initialization, our goal is to simultaneously optimize the mesh geometry, color texture, opacity maps, a set of 3D Gaussians, and the deformation field. At a specific time, we perform $\alpha$-blending on the RGB and opacity values based on the merged and re-ordered z-buffers from mesh and 3D Gaussian rasterizations. This produces the final rendering, which is supervised by the ground-truth image. Experiments demonstrate that our approach adapts the appropriate type of primitives to represent the different parts of the dynamic scene and outperforms all the baseline methods in both quantitative and qualitative comparisons without losing render speed.
Related papers
- DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation [10.250715657201363]
We introduce DreamMesh4D, a novel framework combining mesh representation with geometric skinning technique to generate high-quality 4D object from a monocular video.
Our method is compatible with modern graphic pipelines, showcasing its potential in the 3D gaming and film industry.
arXiv Detail & Related papers (2024-10-09T10:41:08Z) - EVER: Exact Volumetric Ellipsoid Rendering for Real-time View Synthesis [72.53316783628803]
We present Exact Volumetric Ellipsoid Rendering (EVER), a method for real-time differentiable emission-only volume rendering.
Unlike recentization based approach by 3D Gaussian Splatting (3DGS), our primitive based representation allows for exact volume rendering.
We show that our method is more accurate with blending issues than 3DGS and follow-up work on view rendering.
arXiv Detail & Related papers (2024-10-02T17:59:09Z) - Towards Realistic Example-based Modeling via 3D Gaussian Stitching [31.710954782769377]
We present an example-based modeling method that combines multiple Gaussian fields in a point-based representation using sample-guided synthesis.
Specifically, as for composition, we create a GUI to segment and transform multiple fields in real time, easily obtaining a semantically meaningful composition of models.
For texture blending, due to the discrete and irregular nature of 3DGS, straightforwardly applying gradient propagation as SeamlssNeRF is not supported.
arXiv Detail & Related papers (2024-08-28T11:13:27Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - Dynamic Gaussians Mesh: Consistent Mesh Reconstruction from Monocular Videos [27.531394287148384]
We introduce Dynamic Gaussians Mesh (DG-Mesh), a framework to reconstruct a high-fidelity and time-consistent mesh given a single monocular video.
Our work leverages the recent advancement in 3D Gaussian Splatting to construct the mesh sequence with temporal consistency from a video.
We introduce the Gaussian-Mesh Anchoring, which encourages evenly distributed Gaussians, resulting better mesh reconstruction through mesh-guided densification and pruning on the deformed Gaussians.
arXiv Detail & Related papers (2024-04-18T17:58:16Z) - Sketch3D: Style-Consistent Guidance for Sketch-to-3D Generation [55.73399465968594]
This paper proposes a novel generation paradigm Sketch3D to generate realistic 3D assets with shape aligned with the input sketch and color matching the textual description.
Three strategies are designed to optimize 3D Gaussians, i.e., structural optimization via a distribution transfer mechanism, color optimization with a straightforward MSE loss and sketch similarity optimization with a CLIP-based geometric similarity loss.
arXiv Detail & Related papers (2024-04-02T11:03:24Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
Pose Refinement in the Wild [96.09941542587865]
We present a novel 3D pose refinement approach based on differentiable rendering for objects of arbitrary categories in the wild.
In this way, we precisely align 3D models to objects in RGB images which results in significantly improved 3D pose estimates.
We evaluate our approach on the challenging Pix3D dataset and achieve up to 55% relative improvement compared to state-of-the-art refinement methods in multiple metrics.
arXiv Detail & Related papers (2020-07-17T12:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.