論文の概要: Diffusion Models are Geometry Critics: Single Image 3D Editing Using Pre-Trained Diffusion Priors
- arxiv url: http://arxiv.org/abs/2403.11503v1
- Date: Mon, 18 Mar 2024 06:18:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 16:26:41.714576
- Title: Diffusion Models are Geometry Critics: Single Image 3D Editing Using Pre-Trained Diffusion Priors
- Title(参考訳): 拡散モデルと幾何学的批判
- Authors: Ruicheng Wang, Jianfeng Xiang, Jiaolong Yang, Xin Tong,
- Abstract要約: 単一画像の3次元操作を可能にする新しい画像編集手法を提案する。
本手法は,テキスト・イメージ・ペアの広い範囲で訓練された強力な画像拡散モデルを直接活用する。
提案手法では,高画質な3D画像編集が可能で,視点変換が大きく,外観や形状の整合性も高い。
- 参考スコア(独自算出の注目度): 24.478875248825563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel image editing technique that enables 3D manipulations on single images, such as object rotation and translation. Existing 3D-aware image editing approaches typically rely on synthetic multi-view datasets for training specialized models, thus constraining their effectiveness on open-domain images featuring significantly more varied layouts and styles. In contrast, our method directly leverages powerful image diffusion models trained on a broad spectrum of text-image pairs and thus retain their exceptional generalization abilities. This objective is realized through the development of an iterative novel view synthesis and geometry alignment algorithm. The algorithm harnesses diffusion models for dual purposes: they provide appearance prior by predicting novel views of the selected object using estimated depth maps, and they act as a geometry critic by correcting misalignments in 3D shapes across the sampled views. Our method can generate high-quality 3D-aware image edits with large viewpoint transformations and high appearance and shape consistency with the input image, pushing the boundaries of what is possible with single-image 3D-aware editing.
- Abstract(参考訳): 本研究では,物体の回転や翻訳などの単一画像の3次元操作を可能にする新しい画像編集手法を提案する。
既存の3D画像編集アプローチは、通常、特別なモデルを訓練するための合成マルチビューデータセットに依存しており、レイアウトやスタイルが大幅に異なるオープンドメイン画像にその効果を制限している。
対照的に、本手法は、テキストと画像のペアの広い範囲で訓練された強力な画像拡散モデルを直接利用し、優れた一般化能力を保っている。
この目的は、反復的なビュー合成と幾何アライメントアルゴリズムの開発によって実現される。
このアルゴリズムは2つの目的のために拡散モデルを利用する: 推定深度マップを用いて選択されたオブジェクトの新規なビューを予測し、サンプリングされたビュー全体にわたる3次元形状の不整合を補正することで幾何学的批評家として機能する。
提案手法は,高画質な3D画像編集を多視点変換と高外観・形状整合性で生成し,単一画像の3D画像編集で可能となるものの境界を推し進める。
関連論文リスト
- G-NeRF: Geometry-enhanced Novel View Synthesis from Single-View Images [45.66479596827045]
我々は,幾何誘導多視点合成手法により,幾何先行性を高めるための幾何強調型NeRF(G-NeRF)を提案する。
単一視点画像に対する多視点監視の欠如に対処するために,深度認識型トレーニングアプローチを設計する。
論文 参考訳(メタデータ) (2024-04-11T04:58:18Z) - GaussCtrl: Multi-View Consistent Text-Driven 3D Gaussian Splatting Editing [38.948892064761914]
GaussCtrlは、3D Gaussian Splatting(3DGS)によって再構成された3Dシーンを編集するテキスト駆動方式である。
私たちの重要な貢献は、複数ビューの一貫性のある編集であり、1つの画像を反復的に編集する代わりに、すべての画像を一緒に編集できる。
論文 参考訳(メタデータ) (2024-03-13T17:35:28Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3Dは、単一視点画像から高忠実なテクスチャメッシュを効率的に生成する新しい手法である。
画像から3Dまでのタスクの品質,一貫性,効率性を総括的に改善するため,領域間拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-10-23T15:02:23Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3Dは拡散モデルに基づく3Dアバター生成のためのテキスト・画像誘導生成モデルである。
我々のフレームワークは、トポロジカルかつ構造的に正しい幾何と高分解能なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-18T17:55:47Z) - DreamSparse: Escaping from Plato's Cave with 2D Frozen Diffusion Model
Given Sparse Views [20.685453627120832]
既存の手法では、品質の高い結果を生成するのに苦労したり、オブジェクトごとの最適化が必要な場合が少なくない。
DreamSparseは、オブジェクトレベルの画像とシーンレベルの画像の両方に対して高品質なノベルビューを合成することができる。
論文 参考訳(メタデータ) (2023-06-06T05:26:26Z) - Vox-E: Text-guided Voxel Editing of 3D Objects [14.88446525549421]
大規模テキスト誘導拡散モデルが注目されているのは、多様な画像を合成できるためである。
本稿では,既存の3次元オブジェクトの編集に潜時拡散モデルのパワーを利用する手法を提案する。
論文 参考訳(メタデータ) (2023-03-21T17:36:36Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - 3D Magic Mirror: Clothing Reconstruction from a Single Image via a
Causal Perspective [96.65476492200648]
本研究は, 自己監督型3D衣料の再構築手法について検討することを目的とする。
1枚の2D画像から人間の衣服の形状やテクスチャを復元する。
論文 参考訳(メタデータ) (2022-04-27T17:46:55Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
カメラポーズの有無にかかわらず、少数のカラー画像から3次元メッシュ表現における形状生成の問題について検討する。
我々は,グラフ畳み込みネットワークを用いたクロスビュー情報を活用することにより,形状品質をさらに向上する。
我々のモデルは初期メッシュの品質とカメラポーズの誤差に頑健であり、テスト時間最適化のための微分関数と組み合わせることができる。
論文 参考訳(メタデータ) (2022-04-21T03:42:31Z) - Towards Realistic 3D Embedding via View Alignment [53.89445873577063]
本稿では,3次元モデルを2次元背景画像に現実的に,かつ自動的に埋め込み,新たな画像を構成する,革新的なビューアライメントGAN(VA-GAN)を提案する。
VA-GANはテクスチャジェネレータとディファレンシャルディスクリミネーターで構成され、相互接続され、エンドツーエンドのトレーニングが可能である。
論文 参考訳(メタデータ) (2020-07-14T14:45:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。