GenFlow: Generalizable Recurrent Flow for 6D Pose Refinement of Novel Objects
- URL: http://arxiv.org/abs/2403.11510v1
- Date: Mon, 18 Mar 2024 06:32:23 GMT
- Title: GenFlow: Generalizable Recurrent Flow for 6D Pose Refinement of Novel Objects
- Authors: Sungphill Moon, Hyeontae Son, Dongcheol Hur, Sangwook Kim,
- Abstract summary: We present GenFlow, an approach that enables both accuracy and generalization to novel objects.
Our method predicts optical flow between the rendered image and the observed image and refines the 6D pose iteratively.
It boosts the performance by a constraint of the 3D shape and the generalizable geometric knowledge learned from an end-to-end differentiable system.
- Score: 14.598853174946656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the progress of learning-based methods for 6D object pose estimation, the trade-off between accuracy and scalability for novel objects still exists. Specifically, previous methods for novel objects do not make good use of the target object's 3D shape information since they focus on generalization by processing the shape indirectly, making them less effective. We present GenFlow, an approach that enables both accuracy and generalization to novel objects with the guidance of the target object's shape. Our method predicts optical flow between the rendered image and the observed image and refines the 6D pose iteratively. It boosts the performance by a constraint of the 3D shape and the generalizable geometric knowledge learned from an end-to-end differentiable system. We further improve our model by designing a cascade network architecture to exploit the multi-scale correlations and coarse-to-fine refinement. GenFlow ranked first on the unseen object pose estimation benchmarks in both the RGB and RGB-D cases. It also achieves performance competitive with existing state-of-the-art methods for the seen object pose estimation without any fine-tuning.
Related papers
- MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images [57.71600854525037]
We propose a Fuse-Describe-Match strategy for 6D pose estimation from RGB-D images.
MatchU is a generic approach that fuses 2D texture and 3D geometric cues for 6D pose prediction of unseen objects.
arXiv Detail & Related papers (2024-03-03T14:01:03Z) - Uncertainty-aware 3D Object-Level Mapping with Deep Shape Priors [15.34487368683311]
We propose a framework that can reconstruct high-quality object-level maps for unknown objects.
Our approach takes multiple RGB-D images as input and outputs dense 3D shapes and 9-DoF poses for detected objects.
We derive a probabilistic formulation that propagates shape and pose uncertainty through two novel loss functions.
arXiv Detail & Related papers (2023-09-17T00:48:19Z) - Shape-Constraint Recurrent Flow for 6D Object Pose Estimation [15.238626453460666]
We propose a shape-constraint recurrent matching framework for 6D object pose estimation.
We first compute a pose-induced flow based on the displacement of 2D reprojection between the initial pose and the currently estimated pose.
We then use this pose-induced flow to construct the correlation map for the following matching iterations.
arXiv Detail & Related papers (2023-06-23T02:36:34Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPose is a method to estimate the 6D pose of novel objects, that is, objects unseen during training.
We present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects.
Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner.
arXiv Detail & Related papers (2022-12-13T19:30:03Z) - Robust Category-Level 6D Pose Estimation with Coarse-to-Fine Rendering
of Neural Features [17.920305227880245]
We consider the problem of category-level 6D pose estimation from a single RGB image.
Our approach represents an object category as a cuboid mesh and learns a generative model of the neural feature activations at each mesh.
Our experiments demonstrate an enhanced category-level 6D pose estimation performance compared to prior work.
arXiv Detail & Related papers (2022-09-12T21:31:36Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose
Estimation with Decoupled Rotation Mechanism [49.89268018642999]
We propose a fast shape-based network (FS-Net) with efficient category-level feature extraction for 6D pose estimation.
The proposed method achieves state-of-the-art performance in both category- and instance-level 6D object pose estimation.
arXiv Detail & Related papers (2021-03-12T03:07:24Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - Shape Prior Deformation for Categorical 6D Object Pose and Size
Estimation [62.618227434286]
We present a novel learning approach to recover the 6D poses and sizes of unseen object instances from an RGB-D image.
We propose a deep network to reconstruct the 3D object model by explicitly modeling the deformation from a pre-learned categorical shape prior.
arXiv Detail & Related papers (2020-07-16T16:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.