Shape-Constraint Recurrent Flow for 6D Object Pose Estimation
- URL: http://arxiv.org/abs/2306.13266v1
- Date: Fri, 23 Jun 2023 02:36:34 GMT
- Title: Shape-Constraint Recurrent Flow for 6D Object Pose Estimation
- Authors: Yang Hai, Rui Song, Jiaojiao Li, Yinlin Hu
- Abstract summary: We propose a shape-constraint recurrent matching framework for 6D object pose estimation.
We first compute a pose-induced flow based on the displacement of 2D reprojection between the initial pose and the currently estimated pose.
We then use this pose-induced flow to construct the correlation map for the following matching iterations.
- Score: 15.238626453460666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most recent 6D object pose methods use 2D optical flow to refine their
results. However, the general optical flow methods typically do not consider
the target's 3D shape information during matching, making them less effective
in 6D object pose estimation. In this work, we propose a shape-constraint
recurrent matching framework for 6D object pose estimation. We first compute a
pose-induced flow based on the displacement of 2D reprojection between the
initial pose and the currently estimated pose, which embeds the target's 3D
shape implicitly. Then we use this pose-induced flow to construct the
correlation map for the following matching iterations, which reduces the
matching space significantly and is much easier to learn. Furthermore, we use
networks to learn the object pose based on the current estimated flow, which
facilitates the computation of the pose-induced flow for the next iteration and
yields an end-to-end system for object pose. Finally, we optimize the optical
flow and object pose simultaneously in a recurrent manner. We evaluate our
method on three challenging 6D object pose datasets and show that it
outperforms the state of the art significantly in both accuracy and efficiency.
Related papers
- GenFlow: Generalizable Recurrent Flow for 6D Pose Refinement of Novel Objects [14.598853174946656]
We present GenFlow, an approach that enables both accuracy and generalization to novel objects.
Our method predicts optical flow between the rendered image and the observed image and refines the 6D pose iteratively.
It boosts the performance by a constraint of the 3D shape and the generalizable geometric knowledge learned from an end-to-end differentiable system.
arXiv Detail & Related papers (2024-03-18T06:32:23Z) - Improving 2D-3D Dense Correspondences with Diffusion Models for 6D
Object Pose Estimation [9.760487761422326]
Estimating 2D-3D correspondences between RGB images and 3D space is a fundamental problem in 6D object pose estimation.
Recent pose estimators use dense correspondence maps and Point-to-Point algorithms to estimate object poses.
Recent advancements in image-to-image translation have led to diffusion models being the superior choice when evaluated on benchmarking datasets.
arXiv Detail & Related papers (2024-02-09T14:27:40Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
Correspondence Field Estimation and Pose Optimization [46.144194562841435]
We propose a framework based on a recurrent neural network (RNN) for object pose refinement.
The problem is formulated as a non-linear least squares problem based on the estimated correspondence field.
The correspondence field estimation and pose refinement are conducted alternatively in each iteration to recover accurate object poses.
arXiv Detail & Related papers (2022-03-24T06:24:55Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
Current monocular-based 6D object pose estimation methods generally achieve less competitive results than RGBD-based methods.
This paper proposes a 3D geometric volume based pose estimation method with a short baseline two-view setting.
Experiments show that our method outperforms state-of-the-art monocular-based methods, and is robust in different objects and scenes.
arXiv Detail & Related papers (2021-09-25T02:55:05Z) - CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects
from Point Clouds [97.63549045541296]
We propose a unified framework that can handle 9DoF pose tracking for novel rigid object instances and per-part pose tracking for articulated objects.
Our method achieves new state-of-the-art performance on category-level rigid object pose (NOCS-REAL275) and articulated object pose benchmarks (SAPIEN, BMVC) at the fastest FPS 12.
arXiv Detail & Related papers (2021-04-08T00:14:58Z) - FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose
Estimation with Decoupled Rotation Mechanism [49.89268018642999]
We propose a fast shape-based network (FS-Net) with efficient category-level feature extraction for 6D pose estimation.
The proposed method achieves state-of-the-art performance in both category- and instance-level 6D object pose estimation.
arXiv Detail & Related papers (2021-03-12T03:07:24Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - Shape Prior Deformation for Categorical 6D Object Pose and Size
Estimation [62.618227434286]
We present a novel learning approach to recover the 6D poses and sizes of unseen object instances from an RGB-D image.
We propose a deep network to reconstruct the 3D object model by explicitly modeling the deformation from a pre-learned categorical shape prior.
arXiv Detail & Related papers (2020-07-16T16:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.