論文の概要: Semantic Prompting with Image-Token for Continual Learning
- arxiv url: http://arxiv.org/abs/2403.11537v1
- Date: Mon, 18 Mar 2024 07:43:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 16:16:57.314852
- Title: Semantic Prompting with Image-Token for Continual Learning
- Title(参考訳): 連続学習のためのイメージトークンを用いたセマンティック・プロンプト
- Authors: Jisu Han, Jaemin Na, Wonjun Hwang,
- Abstract要約: I-Promptはタスク予測を排除するためのタスクに依存しないアプローチである。
提案手法は,4つのベンチマーク上での競合性能を実現する。
様々なシナリオにまたがって,提案手法の優位性を示す。
- 参考スコア(独自算出の注目度): 7.5140668729696145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning aims to refine model parameters for new tasks while retaining knowledge from previous tasks. Recently, prompt-based learning has emerged to leverage pre-trained models to be prompted to learn subsequent tasks without the reliance on the rehearsal buffer. Although this approach has demonstrated outstanding results, existing methods depend on preceding task-selection process to choose appropriate prompts. However, imperfectness in task-selection may lead to negative impacts on the performance particularly in the scenarios where the number of tasks is large or task distributions are imbalanced. To address this issue, we introduce I-Prompt, a task-agnostic approach focuses on the visual semantic information of image tokens to eliminate task prediction. Our method consists of semantic prompt matching, which determines prompts based on similarities between tokens, and image token-level prompting, which applies prompts directly to image tokens in the intermediate layers. Consequently, our method achieves competitive performance on four benchmarks while significantly reducing training time compared to state-of-the-art methods. Moreover, we demonstrate the superiority of our method across various scenarios through extensive experiments.
- Abstract(参考訳): 継続的な学習は、以前のタスクからの知識を維持しながら、新しいタスクのモデルパラメータを洗練することを目的としている。
近年,リハーサルバッファに頼らずに後続タスクの学習を促すために,事前学習モデルを活用するプロンプトベースの学習が出現している。
提案手法は優れた結果を示したが,既存の手法は適切なプロンプトを選択するのに先行するタスク選択プロセスに依存している。
しかし、タスク選択の不完全性は、特にタスク数が大きい場合やタスク分布が不均衡な場合において、パフォーマンスに悪影響を及ぼす可能性がある。
この問題に対処するために、タスクに依存しないI-Promptを導入し、タスク予測をなくすために画像トークンの視覚的意味情報に焦点をあてる。
提案手法は,トークン間の類似性に基づいてプロンプトを決定するセマンティックプロンプトマッチングと,中間層における画像トークンに直接プロンプトを適用するイメージトークンレベルのプロンプトとから構成される。
その結果,提案手法は4つのベンチマークにおいて,最先端の手法に比べてトレーニング時間を大幅に短縮し,競争性能が向上した。
さらに,広範囲な実験を通じて,様々なシナリオにおける手法の優位性を示す。
関連論文リスト
- Vector Quantization Prompting for Continual Learning [23.26682439914273]
連続学習は、1つのモデルを一連のタスクでトレーニングする際に破滅的な忘れを克服する必要がある。
最近のトップパフォーマンスアプローチは、学習可能なパラメータのセットを使ってタスク知識をエンコードするプロンプトベースの手法である。
本稿では,ベクトル量子化を離散的なプロンプトのエンドツーエンドトレーニングに組み込む,プロンプトに基づく連続学習手法であるVQ-Promptを提案する。
論文 参考訳(メタデータ) (2024-10-27T13:43:53Z) - Bayesian Multi-Task Transfer Learning for Soft Prompt Tuning [44.43258626098661]
我々は、ソースタスクからトレーニングソースプロンプトを介して知識を抽出する場合、ソースタスク間の相関を考慮し、ターゲットタスクへのより良い転送を行う必要があると論じる。
本稿では,ソースタスク間のプロンプトの後方分布を扱うベイズ的手法を提案する。
ベイジアンマルチタスク変換学習手法は,多くの環境において最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-13T16:57:02Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
インストラクションチューニング(IT)は,大規模言語モデル(LLM)を命令付き多種多様なタスクで訓練することにより,印象的なゼロショット一般化を実現する。
ITモデルの性能と一般化性を改善するために、新しいタスクをどのように選択するかは、未解決の問題である。
本稿では,情報的タスクを識別する新しいフレームワークである即時不確実性に基づくアクティブな指導チューニングを提案し,選択したタスク上でモデルをアクティブにチューニングする。
論文 参考訳(メタデータ) (2023-11-01T04:40:05Z) - Multi-Task Consistency for Active Learning [18.794331424921946]
不整合に基づくアクティブラーニングは、アノテーションに対する情報的サンプルの選択に有効であることが証明されている。
本稿では,オブジェクト検出とセマンティックセグメンテーションという2つの複合視覚タスクのための,新しいマルチタスク能動学習戦略を提案する。
提案手法は、利用可能なデータのわずか67%を使用して、完全にトレーニングされたパフォーマンスの95%を達成している。
論文 参考訳(メタデータ) (2023-06-21T17:34:31Z) - Continual Prompt Tuning for Dialog State Tracking [58.66412648276873]
望ましいダイアログシステムは、古いスキルを忘れずに継続的に新しいスキルを学ぶことができるべきである。
本稿では,タスク間の知識伝達を可能にするパラメータ効率フレームワークであるContinuous Prompt Tuningを提案する。
論文 参考訳(メタデータ) (2022-03-13T13:22:41Z) - PROMPT WAYWARDNESS: The Curious Case of Discretized Interpretation of
Continuous Prompts [99.03864962014431]
目標タスクの微調整連続プロンプトは、フルモデルの微調整に代わるコンパクトな代替品として登場した。
実際には、連続的なプロンプトによって解決されたタスクと、最も近い隣人との間の「方向」の挙動を観察する。
論文 参考訳(メタデータ) (2021-12-15T18:55:05Z) - Pretext Tasks selection for multitask self-supervised speech
representation learning [23.39079406674442]
提案手法では,候補群の中からプレテキストタスク群を選択する手法を提案する。
話者認識と自動音声認識の実験により,我々のアプローチが検証された。
論文 参考訳(メタデータ) (2021-07-01T16:36:29Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
表現学習のための標準メタラーニングは、複数のタスク間で共有される共通の表現を見つけることを目的とする。
本研究では,タスクの側情報を手作業に適した表現にマッピングし,条件付け関数を推定することで,この問題を克服する。
この利点を実用的に活用できるメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-30T12:02:14Z) - Learning Invariant Representation for Continual Learning [5.979373021392084]
継続的学習の重要な課題は、エージェントが新しいタスクに直面したときに、以前に学んだタスクを壊滅的に忘れることです。
連続学習のための学習不変表現(IRCL)という新しい擬似リハーサル法を提案する。
共有不変表現を分離することは、タスクのシーケンスを継続的に学習するのに役立つ。
論文 参考訳(メタデータ) (2021-01-15T15:12:51Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
数ショットの分類のためのメタラーニングの鍵となるアイデアは、テスト時に直面した数ショットの状況を模倣することである。
一般化性能を向上させるための適応型タスクサンプリング手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T03:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。