Offline Multitask Representation Learning for Reinforcement Learning
- URL: http://arxiv.org/abs/2403.11574v2
- Date: Thu, 31 Oct 2024 16:29:10 GMT
- Title: Offline Multitask Representation Learning for Reinforcement Learning
- Authors: Haque Ishfaq, Thanh Nguyen-Tang, Songtao Feng, Raman Arora, Mengdi Wang, Ming Yin, Doina Precup,
- Abstract summary: We study offline multitask representation learning in reinforcement learning (RL)
We propose a new algorithm called MORL for offline multitask representation learning.
Our theoretical results demonstrate the benefits of using the learned representation from the upstream offline task instead of directly learning the representation of the low-rank model.
- Score: 86.26066704016056
- License:
- Abstract: We study offline multitask representation learning in reinforcement learning (RL), where a learner is provided with an offline dataset from different tasks that share a common representation and is asked to learn the shared representation. We theoretically investigate offline multitask low-rank RL, and propose a new algorithm called MORL for offline multitask representation learning. Furthermore, we examine downstream RL in reward-free, offline and online scenarios, where a new task is introduced to the agent that shares the same representation as the upstream offline tasks. Our theoretical results demonstrate the benefits of using the learned representation from the upstream offline task instead of directly learning the representation of the low-rank model.
Related papers
- MORE-3S:Multimodal-based Offline Reinforcement Learning with Shared
Semantic Spaces [4.27038429382431]
We transform offline reinforcement learning into a supervised learning task by integrating multimodal and pre-trained language models.
Our approach incorporates state information derived from images and action-related data obtained from text.
Our method significantly outperforms current baselines as evidenced by evaluations conducted on Atari and OpenAI Gym environments.
arXiv Detail & Related papers (2024-02-20T09:15:50Z) - Offline Multi-task Transfer RL with Representational Penalization [26.114893629771736]
We study the problem of representation transfer in offline Reinforcement Learning (RL)
We propose an algorithm to compute pointwise uncertainty measures for the learnt representation.
arXiv Detail & Related papers (2024-02-19T21:52:44Z) - On Context Distribution Shift in Task Representation Learning for
Offline Meta RL [7.8317653074640186]
We focus on context-based OMRL, specifically on the challenge of learning task representation for OMRL.
To overcome this problem, we present a hard-sampling-based strategy to train a robust task context encoder.
arXiv Detail & Related papers (2023-04-01T16:21:55Z) - Provable Benefit of Multitask Representation Learning in Reinforcement
Learning [46.11628795660159]
This paper theoretically characterizes the benefit of representation learning under the low-rank Markov decision process (MDP) model.
To the best of our knowledge, this is the first theoretical study that characterizes the benefit of representation learning in exploration-based reward-free multitask reinforcement learning.
arXiv Detail & Related papers (2022-06-13T04:29:02Z) - Provable Benefits of Representational Transfer in Reinforcement Learning [59.712501044999875]
We study the problem of representational transfer in RL, where an agent first pretrains in a number of source tasks to discover a shared representation.
We show that given generative access to source tasks, we can discover a representation, using which subsequent linear RL techniques quickly converge to a near-optimal policy.
arXiv Detail & Related papers (2022-05-29T04:31:29Z) - Provably Efficient Representation Selection in Low-rank Markov Decision
Processes: From Online to Offline RL [84.14947307790361]
We propose an efficient algorithm, called ReLEX, for representation learning in both online and offline reinforcement learning.
We show that the online version of ReLEX, called Re-UCB, always performs no worse than the state-of-the-art algorithm without representation selection.
For the offline counterpart, ReLEX-LCB, we show that the algorithm can find the optimal policy if the representation class can cover the state-action space.
arXiv Detail & Related papers (2021-06-22T17:16:50Z) - Reinforcement Learning with Prototypical Representations [114.35801511501639]
Proto-RL is a self-supervised framework that ties representation learning with exploration through prototypical representations.
These prototypes simultaneously serve as a summarization of the exploratory experience of an agent as well as a basis for representing observations.
This enables state-of-the-art downstream policy learning on a set of difficult continuous control tasks.
arXiv Detail & Related papers (2021-02-22T18:56:34Z) - Return-Based Contrastive Representation Learning for Reinforcement
Learning [126.7440353288838]
We propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns.
Our algorithm outperforms strong baselines on complex tasks in Atari games and DeepMind Control suite.
arXiv Detail & Related papers (2021-02-22T13:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.