The Value of Reward Lookahead in Reinforcement Learning
- URL: http://arxiv.org/abs/2403.11637v2
- Date: Fri, 11 Oct 2024 09:13:12 GMT
- Title: The Value of Reward Lookahead in Reinforcement Learning
- Authors: Nadav Merlis, Dorian Baudry, Vianney Perchet,
- Abstract summary: We analyze the value of future reward information through the lens of competitive analysis.
We characterize the worst-case reward distribution and derive exact ratios for the worst-case reward expectations.
Our results cover the full spectrum between observing the immediate rewards before acting to observing all the rewards before the interaction starts.
- Score: 26.319716324907198
- License:
- Abstract: In reinforcement learning (RL), agents sequentially interact with changing environments while aiming to maximize the obtained rewards. Usually, rewards are observed only after acting, and so the goal is to maximize the expected cumulative reward. Yet, in many practical settings, reward information is observed in advance -- prices are observed before performing transactions; nearby traffic information is partially known; and goals are oftentimes given to agents prior to the interaction. In this work, we aim to quantifiably analyze the value of such future reward information through the lens of competitive analysis. In particular, we measure the ratio between the value of standard RL agents and that of agents with partial future-reward lookahead. We characterize the worst-case reward distribution and derive exact ratios for the worst-case reward expectations. Surprisingly, the resulting ratios relate to known quantities in offline RL and reward-free exploration. We further provide tight bounds for the ratio given the worst-case dynamics. Our results cover the full spectrum between observing the immediate rewards before acting to observing all the rewards before the interaction starts.
Related papers
- Reinforcement Learning with Segment Feedback [56.54271464134885]
We consider a model named RL with segment feedback, which offers a general paradigm filling the gap between per-state-action feedback and trajectory feedback.
Under binary feedback, increasing the number of segments $m$ decreases the regret at an exponential rate; in contrast, surprisingly, under sum feedback, increasing $m$ does not reduce the regret significantly.
arXiv Detail & Related papers (2025-02-03T23:08:42Z) - Beyond Simple Sum of Delayed Rewards: Non-Markovian Reward Modeling for Reinforcement Learning [44.770495418026734]
Reinforcement Learning (RL) empowers agents to acquire various skills by learning from reward signals.
Traditional methods assume the existence of underlying Markovian rewards and that the observed delayed reward is simply the sum of instance-level rewards.
We propose Composite Delayed Reward Transformer (CoDeTr), which incorporates a specialized in-sequence attention mechanism.
arXiv Detail & Related papers (2024-10-26T13:12:27Z) - Explaining an Agent's Future Beliefs through Temporally Decomposing Future Reward Estimators [5.642469620531317]
We modify an agent's future reward estimator to predict their next N expected rewards, referred to as Temporal Reward Decomposition (TRD)
We can: estimate when an agent may expect to receive a reward, the value of the reward and the agent's confidence in receiving it; measure an input feature's temporal importance to the agent's action decisions; and predict the influence of different actions on future rewards.
We show that DQN agents trained on Atari environments can be efficiently retrained to incorporate TRD with minimal impact on performance.
arXiv Detail & Related papers (2024-08-15T15:56:15Z) - Estimating and Incentivizing Imperfect-Knowledge Agents with Hidden
Rewards [4.742123770879715]
In practice, incentive providers often cannot observe the reward realizations of incentivized agents.
This paper explores a repeated adverse selection game between a self-interested learning agent and a learning principal.
We introduce an estimator whose only input is the history of principal's incentives and agent's choices.
arXiv Detail & Related papers (2023-08-13T08:12:01Z) - Would I have gotten that reward? Long-term credit assignment by
counterfactual contribution analysis [50.926791529605396]
We introduce Counterfactual Contribution Analysis (COCOA), a new family of model-based credit assignment algorithms.
Our algorithms achieve precise credit assignment by measuring the contribution of actions upon obtaining subsequent rewards.
arXiv Detail & Related papers (2023-06-29T09:27:27Z) - Symbol Guided Hindsight Priors for Reward Learning from Human
Preferences [2.512827436728378]
We present the PRIor Over Rewards (PRIOR) framework, which incorporates priors about the structure of the reward function and the preference feedback into the reward learning process.
We demonstrate that using an abstract state space for the computation of the priors further improves the reward learning and the agent's performance.
arXiv Detail & Related papers (2022-10-17T14:57:06Z) - Reinforcement Learning with Trajectory Feedback [76.94405309609552]
In this work, we take a first step towards relaxing this assumption and require a weaker form of feedback, which we refer to as emphtrajectory feedback.
Instead of observing the reward obtained after every action, we assume we only receive a score that represents the quality of the whole trajectory observed by the agent, namely, the sum of all rewards obtained over this trajectory.
We extend reinforcement learning algorithms to this setting, based on least-squares estimation of the unknown reward, for both the known and unknown transition model cases, and study the performance of these algorithms by analyzing their regret.
arXiv Detail & Related papers (2020-08-13T17:49:18Z) - Fast active learning for pure exploration in reinforcement learning [48.98199700043158]
We show that bonuses that scale with $1/n$ bring faster learning rates, improving the known upper bounds with respect to the dependence on the horizon.
We also show that with an improved analysis of the stopping time, we can improve by a factor $H$ the sample complexity in the best-policy identification setting.
arXiv Detail & Related papers (2020-07-27T11:28:32Z) - Maximizing Information Gain in Partially Observable Environments via
Prediction Reward [64.24528565312463]
This paper tackles the challenge of using belief-based rewards for a deep RL agent.
We derive the exact error between negative entropy and the expected prediction reward.
This insight provides theoretical motivation for several fields using prediction rewards.
arXiv Detail & Related papers (2020-05-11T08:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.