論文の概要: Better (pseudo-)labels for semi-supervised instance segmentation
- arxiv url: http://arxiv.org/abs/2403.11675v1
- Date: Mon, 18 Mar 2024 11:23:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 15:37:57.388823
- Title: Better (pseudo-)labels for semi-supervised instance segmentation
- Title(参考訳): 半教師付きインスタンスセグメンテーションのためのより良い(擬似)ラベル
- Authors: François Porcher, Camille Couprie, Marc Szafraniec, Jakob Verbeek,
- Abstract要約: 本稿では,教師モデルの訓練プロセスを強化するための2段階戦略を導入し,数発の学習における性能を大幅に向上させる。
我々は,LVISデータセット上での最先端の教師付きベースライン性能に対して,平均精度(AP)が2.8%,レアクラスのAPが10.3%向上し,顕著な改善が見られた。
- 参考スコア(独自算出の注目度): 21.703173564795353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the availability of large datasets for tasks like image classification and image-text alignment, labeled data for more complex recognition tasks, such as detection and segmentation, is less abundant. In particular, for instance segmentation annotations are time-consuming to produce, and the distribution of instances is often highly skewed across classes. While semi-supervised teacher-student distillation methods show promise in leveraging vast amounts of unlabeled data, they suffer from miscalibration, resulting in overconfidence in frequently represented classes and underconfidence in rarer ones. Additionally, these methods encounter difficulties in efficiently learning from a limited set of examples. We introduce a dual-strategy to enhance the teacher model's training process, substantially improving the performance on few-shot learning. Secondly, we propose a calibration correction mechanism that that enables the student model to correct the teacher's calibration errors. Using our approach, we observed marked improvements over a state-of-the-art supervised baseline performance on the LVIS dataset, with an increase of 2.8% in average precision (AP) and 10.3% gain in AP for rare classes.
- Abstract(参考訳): 画像分類や画像テキストアライメントといったタスクのための大規模なデータセットが利用可能であるにも関わらず、検出やセグメンテーションといったより複雑な認識タスクのためのラベル付きデータは、あまり多くはない。
特に、セグメンテーションアノテーションは生成するのに時間がかかり、インスタンスの分布はクラス間で高度に歪められていることが多い。
教師・学生の半教師による蒸留法は、膨大な量のラベルのないデータを活用することを約束するが、それらは誤校正に苦しむため、しばしば表されるクラスでは過度に自信を持ち、稀なクラスでは過度に自信を欠く。
さらに、これらの手法は限られた例から効率的に学習する上で困難に直面する。
本稿では,教師モデルの訓練プロセスを強化するための2段階戦略を導入し,数発の学習における性能を大幅に向上させる。
次に,教師の校正誤差を補正する校正補正機構を提案する。
提案手法を用いることで,LVISデータセット上での最先端の教師付きベースライン性能を大幅に改善し,平均精度(AP)が2.8%,レアクラスのAPが10.3%向上した。
関連論文リスト
- Versatile Teacher: A Class-aware Teacher-student Framework for Cross-domain Adaptation [2.9748058103007957]
私たちはVersatile Teacher(VT)という新しい教師学生モデルを紹介します。
VTはクラス固有の検出困難を考慮し、2段階の擬似ラベル選択機構を用いてより信頼性の高い擬似ラベルを生成する。
提案手法は,3つのベンチマークデータセットに対して有望な結果を示し,広範に使用されている1段検出器のアライメント手法を拡張した。
論文 参考訳(メタデータ) (2024-05-20T03:31:43Z) - Understanding the Detrimental Class-level Effects of Data Augmentation [63.1733767714073]
最適な平均精度を達成するには、ImageNetで最大20%の個々のクラスの精度を著しく損なうコストがかかる。
本稿では,DAがクラスレベルの学習力学とどのように相互作用するかを理解するためのフレームワークを提案する。
そこで本研究では, クラス条件拡張戦略により, 負の影響を受けるクラスの性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-07T18:37:43Z) - GenCo: An Auxiliary Generator from Contrastive Learning for Enhanced
Few-Shot Learning in Remote Sensing [9.504503675097137]
我々は、バックボーンを事前訓練し、同時に特徴サンプルの変種を探索するジェネレータベースのコントラスト学習フレームワーク(GenCo)を導入する。
微調整では、補助ジェネレータを使用して、特徴空間内の限られたラベル付きデータサンプルを濃縮することができる。
本稿では,2つの重要なリモートセンシングデータセットにおいて,この手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-27T03:59:19Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
本稿では, サンプル重み付けを統一した定式化により, 一般的な擬似ラベル法を再検討する。
トレーニング中の擬似ラベルの量と質を両立させることでトレードオフを克服するSoftMatchを提案する。
実験では、画像、テキスト、不均衡な分類など、さまざまなベンチマークで大幅に改善されている。
論文 参考訳(メタデータ) (2023-01-26T03:53:25Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
ロングテール認識の主な課題は、データ分布の不均衡とテールクラスにおけるサンプル不足である。
半教師付き長尾認識という新しい認識設定を提案する。
2つのデータセットで、他の競合方法よりも大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-05-01T00:43:38Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
このようなシナリオにおけるキャリブレーションとパフォーマンスを改善する2つの方法を提案します。
異なるサンプルによるデータセットバイアスに対して,シフトバッチ正規化を提案する。
提案手法は,複数の長尾認識ベンチマークデータセットに新しいレコードをセットする。
論文 参考訳(メタデータ) (2021-04-01T13:55:21Z) - Boosting the Performance of Semi-Supervised Learning with Unsupervised
Clustering [10.033658645311188]
学習中の間欠的にラベルを完全に無視することは,小サンプル体制における性能を著しく向上させることを示す。
本手法は,最先端のSSLアルゴリズムの高速化に有効であることを示す。
論文 参考訳(メタデータ) (2020-12-01T14:19:14Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
半教師付きアプローチ,特に自己学習パラダイムを用いて,最先端の成果を得ることができることを示す。
まず、ラベル付きデータに基づいて教師モデルを訓練し、次にラベルなしデータの大規模なセット上で擬似ラベルを生成する。
私たちの堅牢なトレーニングフレームワークは、人名と擬似ラベルを共同で消化し、Cityscapes、CamVid、KITTIデータセット上で最高のパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2020-04-30T17:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。