Nonsmooth Implicit Differentiation: Deterministic and Stochastic Convergence Rates
- URL: http://arxiv.org/abs/2403.11687v3
- Date: Tue, 4 Jun 2024 09:53:01 GMT
- Title: Nonsmooth Implicit Differentiation: Deterministic and Stochastic Convergence Rates
- Authors: Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo,
- Abstract summary: We study the problem of efficiently computing the derivative of the fixed-point of a parametric nondifferentiable contraction map.
We analyze two popular approaches: iterative differentiation (ITD) and approximate implicit differentiation (AID)
We establish rates for the convergence of NSID, encompassing the best available rates in the smooth setting.
- Score: 34.81849268839475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of efficiently computing the derivative of the fixed-point of a parametric nondifferentiable contraction map. This problem has wide applications in machine learning, including hyperparameter optimization, meta-learning and data poisoning attacks. We analyze two popular approaches: iterative differentiation (ITD) and approximate implicit differentiation (AID). A key challenge behind the nonsmooth setting is that the chain rule does not hold anymore. We build upon the work by Bolte et al. (2022), who prove linear convergence of nonsmooth ITD under a piecewise Lipschitz smooth assumption. In the deterministic case, we provide a linear rate for AID and an improved linear rate for ITD which closely match the ones for the smooth setting. We further introduce NSID, a new stochastic method to compute the implicit derivative when the contraction map is defined as the composition of an outer map and an inner map which is accessible only through a stochastic unbiased estimator. We establish rates for the convergence of NSID, encompassing the best available rates in the smooth setting. We also present illustrative experiments confirming our analysis.
Related papers
- The High Line: Exact Risk and Learning Rate Curves of Stochastic Adaptive Learning Rate Algorithms [8.681909776958184]
We develop a framework for analyzing the training and learning rate dynamics on a large class of high-dimensional optimization problems.
We give exact expressions for the risk and learning rate curves in terms of a deterministic solution to a system of ODEs.
We investigate in detail two adaptive learning rates -- an idealized exact line search and AdaGrad-Norm on the least squares problem.
arXiv Detail & Related papers (2024-05-30T00:27:52Z) - Derivatives of Stochastic Gradient Descent in parametric optimization [16.90974792716146]
We investigate the behavior of the derivatives of the iterates of Gradient Descent (SGD)
We show that they are driven by an inexact SGD on a different objective function, perturbed by the convergence of the original SGD.
Specifically, we demonstrate that with constant step-sizes, these derivatives stabilize within a noise ball centered at the solution derivative, and that with vanishing step-sizes they exhibit $O(log(k)2 / k)$ convergence rates.
arXiv Detail & Related papers (2024-05-24T19:32:48Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum
Minimization [52.25843977506935]
We propose an adaptive variance method, called AdaSpider, for $L$-smooth, non-reduction functions with a finitesum structure.
In doing so, we are able to compute an $epsilon-stationary point with $tildeOleft + st/epsilon calls.
arXiv Detail & Related papers (2022-11-03T14:41:46Z) - A Stochastic Bundle Method for Interpolating Networks [18.313879914379008]
We propose a novel method for training deep neural networks that are capable of driving the empirical loss to zero.
At each iteration our method constructs a maximum linear approximation, known as the bundle of the objective learning approximation.
arXiv Detail & Related papers (2022-01-29T23:02:30Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Stochastic optimization with momentum: convergence, fluctuations, and
traps avoidance [0.0]
In this paper, a general optimization procedure is studied, unifying several variants of the gradient descent such as, among others, the heavy ball method, the Nesterov Accelerated Gradient (S-NAG), and the widely used Adam method.
The avoidance is studied as a noisy discretization of a non-autonomous ordinary differential equation.
arXiv Detail & Related papers (2020-12-07T19:14:49Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
We introduce an efficient implicit differentiation algorithm, without matrix inversion, tailored for Lasso-type problems.
Our approach scales to high-dimensional data by leveraging the sparsity of the solutions.
arXiv Detail & Related papers (2020-02-20T18:43:42Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
In high dimensional sparse regression, pivotal estimators are estimators for which the optimal regularization parameter is independent of the noise level.
We show minimax sup-norm convergence rates for non smoothed and smoothed, single task and multitask square-root Lasso-type estimators.
arXiv Detail & Related papers (2020-01-15T16:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.