論文の概要: Meta-Prompting for Automating Zero-shot Visual Recognition with LLMs
- arxiv url: http://arxiv.org/abs/2403.11755v2
- Date: Tue, 19 Mar 2024 13:28:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 20:29:45.123331
- Title: Meta-Prompting for Automating Zero-shot Visual Recognition with LLMs
- Title(参考訳): LLMを用いたゼロショット視覚認識のためのメタプロンプト
- Authors: M. Jehanzeb Mirza, Leonid Karlinsky, Wei Lin, Sivan Doveh, Jakub Micorek, Mateusz Kozinski, Hilde Kuhene, Horst Possegger,
- Abstract要約: ゼロショット認識のためのMPVR(Meta-Prompting for Visual Recognition)を提案する。
MPVRは様々なカテゴリ固有のプロンプトを自動生成し、強いゼロショット分類器を生成する。
例えば、MPVRは、CLIPに対するゼロショット認識の改善を、最大19.8%と18.2%(平均20データセットで5.0%と4.5%)で取得する。
- 参考スコア(独自算出の注目度): 23.212395874969697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt ensembling of Large Language Model (LLM) generated category-specific prompts has emerged as an effective method to enhance zero-shot recognition ability of Vision-Language Models (VLMs). To obtain these category-specific prompts, the present methods rely on hand-crafting the prompts to the LLMs for generating VLM prompts for the downstream tasks. However, this requires manually composing these task-specific prompts and still, they might not cover the diverse set of visual concepts and task-specific styles associated with the categories of interest. To effectively take humans out of the loop and completely automate the prompt generation process for zero-shot recognition, we propose Meta-Prompting for Visual Recognition (MPVR). Taking as input only minimal information about the target task, in the form of its short natural language description, and a list of associated class labels, MPVR automatically produces a diverse set of category-specific prompts resulting in a strong zero-shot classifier. MPVR generalizes effectively across various popular zero-shot image recognition benchmarks belonging to widely different domains when tested with multiple LLMs and VLMs. For example, MPVR obtains a zero-shot recognition improvement over CLIP by up to 19.8% and 18.2% (5.0% and 4.5% on average over 20 datasets) leveraging GPT and Mixtral LLMs, respectively
- Abstract(参考訳): 視覚言語モデル(VLM)のゼロショット認識能力を向上する有効な手法として,大規模言語モデル(LLM)の生成したカテゴリ固有プロンプトのプロンプトアンサンブルが出現している。
これらのカテゴリ固有のプロンプトを得るには、下流タスクのためのVLMプロンプトを生成するために、LSMに手作りのプロンプトを使用する。
しかし、これはこれらのタスク固有のプロンプトを手作業で組み立てる必要があり、それでも、関心のカテゴリに関連する様々な視覚概念やタスク固有のスタイルをカバーしていないかもしれない。
そこで本研究では,視覚認識のためのメタプロンプティング(MPVR)を提案する。
入力は、目的のタスクに関する最小限の情報と、その短い自然言語記述と関連するクラスラベルのリストの形式で、MPVRは自動的にカテゴリ固有のプロンプトの多様なセットを生成し、強力なゼロショット分類器を生成する。
MPVRは、複数のLLMとVLMでテストする際に、広く異なるドメインに属する様々な人気のあるゼロショット画像認識ベンチマークを効果的に一般化する。
例えば、MPVRは、それぞれGPTとMixtral LLMを活用して、CLIPを19.8%、CLIPを18.2%(平均で5.0%、および4.5%)ゼロショット認識改善する。
関連論文リスト
- EZ-HOI: VLM Adaptation via Guided Prompt Learning for Zero-Shot HOI Detection [21.091101582856183]
本稿では,効率的なゼロショットHOI検出(EZ-HOI)のための新しい学習フレームワークを提案する。
まず、学習可能なプロンプトに対してLarge Language Model(LLM)とVLMガイダンスを導入し、詳細なHOI記述と視覚的セマンティクスを統合して、VLMをHOIタスクに適用する。
我々は,既存の手法と比較して,トレーニング可能なパラメータの10.35%から33.95%しか持たない,さまざまなゼロショット設定における最先端性能を実現していることを示す。
論文 参考訳(メタデータ) (2024-10-31T13:06:29Z) - PIP-MM: Pre-Integrating Prompt Information into Visual Encoding via Existing MLLM Structures [5.513631883813244]
既存のMLLMのモジュールを用いて,textbfPre-textbfIntegratestextbfPromptを視覚符号化プロセスに組み込むフレームワークを提案する。
我々のモデルは、視覚トークンの半分を減らしても優れた世代を維持している。
論文 参考訳(メタデータ) (2024-10-30T15:05:17Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - RAR: Retrieving And Ranking Augmented MLLMs for Visual Recognition [78.97487780589574]
MLLM(Multimodal Large Language Models)は、細粒度カテゴリの分類において優れている。
本稿では,MLLMの検索とランク付けのための拡張手法を提案する。
提案手法は, 微粒化認識における固有の限界に対処するだけでなく, モデルの包括的知識基盤も維持する。
論文 参考訳(メタデータ) (2024-03-20T17:59:55Z) - Data-free Multi-label Image Recognition via LLM-powered Prompt Tuning [23.671999163027284]
本稿では,学習データを持たないマルチラベル画像認識のための新しいフレームワークを提案する。
事前学習されたLarge Language Modelの知識を使用して、CLIPのような事前学習されたVision-Language Modelをマルチラベル分類に適応させるプロンプトを学ぶ。
本フレームワークは,新しいカテゴリー認識のための複数の事前学習モデル間の相乗効果を探索する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-02T13:43:32Z) - Generative Cross-Modal Retrieval: Memorizing Images in Multimodal
Language Models for Retrieval and Beyond [99.73306923465424]
画像表現にユニークな識別子文字列を割り当てる生成的クロスモーダル検索フレームワークを提案する。
MLLMのイメージを記憶することで,従来の差別的アプローチとは異なる,クロスモーダル検索の新しいパラダイムを導入する。
論文 参考訳(メタデータ) (2024-02-16T16:31:46Z) - CLAMP: Contrastive LAnguage Model Prompt-tuning [89.96914454453791]
このように適応すれば,大規模な言語モデルでも優れた画像分類性能が得られることを示す。
我々のアプローチは最先端のmLLMを13%上回り、カスタムテキストモデルによる対照的な学習をわずかに上回ります。
論文 参考訳(メタデータ) (2023-12-04T05:13:59Z) - CLIP Is Also a Good Teacher: A New Learning Framework for Inductive
Zero-shot Semantic Segmentation [6.181169909576527]
汎用Zero-shot Semanticは、目に見えないカテゴリーと見えないカテゴリの両方を、目に見えないカテゴリの監督下だけに分割することを目的としている。
既存の手法では大規模な視覚言語モデル(VLM)を採用しており、ゼロショット性能が優れている。
ゼロショットおよびオープンボキャブラリタスクに適用されたクローズドセットセグメンテーション用に設計された任意のイメージエンコーダを実現するためのトレーニングフレームワークであるCLIP-ZSS(Zero-shot Semantic)を提案する。
論文 参考訳(メタデータ) (2023-10-03T09:33:47Z) - Fine-tuning Multimodal LLMs to Follow Zero-shot Demonstrative Instructions [126.3136109870403]
汎用的で軽量なVisual Prompt Generator Complete Module (VPG-C)を導入する。
VPG-Cは、実証的な指示を解釈するために欠落した詳細を推測し、完成する。
私たちは、実証的な命令理解のための包括的なベンチマークであるDEMONを構築します。
論文 参考訳(メタデータ) (2023-08-08T09:32:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。