論文の概要: A tutorial on learning from preferences and choices with Gaussian Processes
- arxiv url: http://arxiv.org/abs/2403.11782v2
- Date: Sun, 24 Mar 2024 10:12:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 23:01:39.688521
- Title: A tutorial on learning from preferences and choices with Gaussian Processes
- Title(参考訳): ガウス過程による選好と選択から学ぶチュートリアル
- Authors: Alessio Benavoli, Dario Azzimonti,
- Abstract要約: このチュートリアルは、既存の文献の特定のギャップに対処する新しいGPベースのモデルを導入しながら、確立された研究の上に構築されている。
このフレームワークは、ランダムなユーティリティモデル、識別の限界、およびオブジェクトとラベルの両方に矛盾するユーティリティを持つシナリオを含む嗜好学習モデルの構築を可能にする。
- 参考スコア(独自算出の注目度): 0.7234862895932991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preference modelling lies at the intersection of economics, decision theory, machine learning and statistics. By understanding individuals' preferences and how they make choices, we can build products that closely match their expectations, paving the way for more efficient and personalised applications across a wide range of domains. The objective of this tutorial is to present a cohesive and comprehensive framework for preference learning with Gaussian Processes (GPs), demonstrating how to seamlessly incorporate rationality principles (from economics and decision theory) into the learning process. By suitably tailoring the likelihood function, this framework enables the construction of preference learning models that encompass random utility models, limits of discernment, and scenarios with multiple conflicting utilities for both object- and label-preference. This tutorial builds upon established research while simultaneously introducing some novel GP-based models to address specific gaps in the existing literature.
- Abstract(参考訳): 推奨モデリングは、経済学、決定理論、機械学習、統計学の交差点にある。
個人の好みを理解し、どのように選択するかを理解することで、期待にぴったり合う製品を構築することができ、幅広い領域にわたってより効率的でパーソナライズされたアプリケーションを実現することができます。
本チュートリアルの目的は,ガウス的プロセス(GP)による嗜好学習のための包括的で包括的な枠組みを提示し,理性原理(経済学や意思決定理論など)を学習プロセスにシームレスに組み込む方法を示すことである。
このフレームワークは、確率関数を適切に調整することにより、ランダムなユーティリティモデル、識別の限界、およびオブジェクトとラベルの両方に矛盾する複数のユーティリティを持つシナリオを含む嗜好学習モデルの構築を可能にする。
このチュートリアルは、既存の文献の特定のギャップに対処する新しいGPベースのモデルを同時に導入しながら、確立された研究の上に構築されている。
関連論文リスト
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Training Survival Models using Scoring Rules [9.330089124239086]
生存分析(Survival Analysis)は、不完全な時間対イベントデータに対する重要な洞察を提供する。
また、確率論的機械学習の重要な例である。
柔軟性の異なるパラメトリックと非パラメトリックのサブフレームワークを確立します。
我々は,本フレームワークを用いて,様々なパラメトリックモデルを復元し,オプティマイザベースの手法と比較して,最適化が等しく動作することを示す。
論文 参考訳(メタデータ) (2024-03-19T20:58:38Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Learning Curves for Decision Making in Supervised Machine Learning -- A
Survey [9.994200032442413]
学習曲線は、機械学習の文脈で採用されている社会科学の概念である。
本稿では,学習曲線のアプローチを3つの基準を用いて分類する枠組みを提案する。
論文 参考訳(メタデータ) (2022-01-28T14:34:32Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
深部強化学習(DRL)のサンプル効率と最終性能を向上させるために,各種自動カリキュラム学習(ACL)手法が提案されている。
本稿では,多目的だがコヒーレントなカリキュラムを作成するための統合された自動カリキュラム学習フレームワークを提案する。
既存の手設計のカリキュラムパラダイムに加えて,抽象カリキュラムを学習するためのフレキシブルなメモリ機構を設計する。
論文 参考訳(メタデータ) (2021-10-06T19:30:25Z) - Discrete Choice Analysis with Machine Learning Capabilities [0.0]
本稿では,政策分析におけるモデルに不可欠な機能について述べる。
機械学習のパラダイムを活用できる分野、すなわち、ユーティリティ方程式のランダム成分の最良の仕様を特定し、体系的に選択する分野を特定する。
論文 参考訳(メタデータ) (2021-01-21T21:34:43Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。