論文の概要: Evaluating Text-to-Image Synthesis: Survey and Taxonomy of Image Quality Metrics
- arxiv url: http://arxiv.org/abs/2403.11821v2
- Date: Fri, 29 Mar 2024 19:27:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 13:44:58.855407
- Title: Evaluating Text-to-Image Synthesis: Survey and Taxonomy of Image Quality Metrics
- Title(参考訳): テキスト・トゥ・イメージ・シンセサイザーの評価:画像品質指標の調査と分類
- Authors: Sebastian Hartwig, Dominik Engel, Leon Sick, Hannah Kniesel, Tristan Payer, Poonam Poonam, Michael Glöckler, Alex Bäuerle, Timo Ropinski,
- Abstract要約: 本稿では,既存のテキスト・画像評価指標について概観する。
これらの指標を分類するための新しい分類法を提案する。
我々は,テキスト・ツー・イメージ評価を行う実践者のためのガイドラインを導出し,評価メカニズムのオープンな課題と,現在の指標の限界について論じる。
- 参考スコア(独自算出の注目度): 9.753473063305503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in text-to-image synthesis enabled through a combination of language and vision foundation models have led to a proliferation of the tools available and an increased attention to the field. When conducting text-to-image synthesis, a central goal is to ensure that the content between text and image is aligned. As such, there exist numerous evaluation metrics that aim to mimic human judgement. However, it is often unclear which metric to use for evaluating text-to-image synthesis systems as their evaluation is highly nuanced. In this work, we provide a comprehensive overview of existing text-to-image evaluation metrics. Based on our findings, we propose a new taxonomy for categorizing these metrics. Our taxonomy is grounded in the assumption that there are two main quality criteria, namely compositionality and generality, which ideally map to human preferences. Ultimately, we derive guidelines for practitioners conducting text-to-image evaluation, discuss open challenges of evaluation mechanisms, and surface limitations of current metrics.
- Abstract(参考訳): 近年,言語と視覚基盤モデルの組み合わせによるテキスト・画像合成の進歩により,ツールの普及が進み,分野への注目が高まっている。
テキストと画像の合成を行う場合、中心となる目的は、テキストと画像のコンテンツが一致していることを保証することである。
このように、人間の判断を模倣することを目的とした評価指標が多数存在する。
しかし,テキスト・ツー・イメージ合成システムの評価に使用する指標が不明瞭である場合が多い。
本稿では,既存のテキスト・画像評価指標について概観する。
本研究は,これらの指標を分類する新しい分類法を提案する。
我々の分類学は、構成性と一般性という2つの主要な品質基準があるという前提に基づいており、それは理想的には人間の嗜好に当てはまる。
最終的に、テキスト・ツー・イメージ評価を行う実践者のためのガイドラインを導出し、評価メカニズムのオープンな課題と現在のメトリクスの表面的制限について議論する。
関連論文リスト
- Visual question answering based evaluation metrics for text-to-image generation [7.105786967332924]
本稿では,各オブジェクトに対する入力テキストと生成画像のアライメントを評価するための新しい評価指標を提案する。
実験結果から,提案手法はより微細なテキスト画像のアライメントと画質を同時に評価できる優れた指標であることがわかった。
論文 参考訳(メタデータ) (2024-11-15T13:32:23Z) - KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities [93.74881034001312]
テキスト・画像生成モデルにおける実体の忠実度に関する系統的研究を行う。
我々はランドマークの建物、航空機、植物、動物など、幅広い現実世界の視覚的実体を生成する能力に焦点をあてる。
その結果、最も高度なテキスト・画像モデルでさえ、正確な視覚的詳細を持つエンティティを生成できないことが判明した。
論文 参考訳(メタデータ) (2024-10-15T17:50:37Z) - TIER: Text-Image Encoder-based Regression for AIGC Image Quality
Assessment [2.59079758388817]
AIGCIQAタスクでは、画像は通常、テキストプロンプトを使用して生成モデルによって生成される。
既存のAIGCIQAメソッドのほとんどは、個々の生成された画像から直接予測されたスコアを回帰する。
本稿では,テキスト画像エンコーダに基づく回帰(TIER)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-08T12:35:15Z) - Stellar: Systematic Evaluation of Human-Centric Personalized
Text-to-Image Methods [52.806258774051216]
我々は,個々のイメージを入力し,生成プロセスの基盤となるテキストと,所望の視覚的コンテキストを記述したテキストに焦点をあてる。
我々は,既存の関連するデータセットよりも桁違いの大きさの個人画像と,リッチなセマンティックな接地真実アノテーションが容易に利用できるパーソナライズされたプロンプトを含む標準化データセット(Stellar)を紹介した。
被験者ごとにテストタイムの微調整を必要とせず,新しいSoTAを定量的かつ人為的に設定した,シンプルで効率的でパーソナライズされたテキスト・ツー・イメージのベースラインを導出する。
論文 参考訳(メタデータ) (2023-12-11T04:47:39Z) - Likelihood-Based Text-to-Image Evaluation with Patch-Level Perceptual
and Semantic Credit Assignment [48.835298314274254]
生成した画像の可能性を直接推定し,テキスト・画像生成性能を評価する。
高い確率は、知覚品質が向上し、テキスト画像のアライメントが向上することを示している。
これらのモデルの生成能力を、数百のサンプルで評価することができる。
論文 参考訳(メタデータ) (2023-08-16T17:26:47Z) - TIAM -- A Metric for Evaluating Alignment in Text-to-Image Generation [2.6890293832784566]
本稿では,プロンプトテンプレートに基づく新しいメトリクスを提案し,プロンプトで指定された内容と対応する生成された画像とのアライメントについて検討する。
我々のアプローチで得られた別の興味深い結果は、画像の品質が、画像のシードとして使われる雑音によって大きく変化することである。
論文 参考訳(メタデータ) (2023-07-11T09:23:05Z) - Transparent Human Evaluation for Image Captioning [70.03979566548823]
画像キャプションモデルのためのルーリックに基づく人間評価プロトコルを開発した。
人為的キャプションは機械的キャプションよりも著しく高品質であることを示す。
この研究は、画像キャプションのためのより透明な評価プロトコルを促進することを願っている。
論文 参考訳(メタデータ) (2021-11-17T07:09:59Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
一連の自然言語キャプションが与えられた場合、エージェントはキャプションに対応する一連の画像を生成する必要がある。
それまでの作業では、このタスクで合成テキスト・画像モデルより優れた繰り返し生成モデルを導入してきた。
従来のモデリング手法には、デュアルラーニングフレームワークの追加など、いくつかの改善点を提示する。
論文 参考訳(メタデータ) (2021-05-20T20:42:42Z) - Intrinsic Image Captioning Evaluation [53.51379676690971]
I2CE(Intrinsic Image Captioning Evaluation)と呼ばれる画像キャプションのための学習ベースメトリクスを提案する。
実験の結果,提案手法は頑健な性能を維持し,意味的類似表現やアライメントの少ない意味論に遭遇した場合,候補キャプションに対してより柔軟なスコアを与えることができた。
論文 参考訳(メタデータ) (2020-12-14T08:36:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。