論文の概要: A Survey on Quality Metrics for Text-to-Image Generation
- arxiv url: http://arxiv.org/abs/2403.11821v5
- Date: Wed, 29 Jan 2025 08:48:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:52:06.006232
- Title: A Survey on Quality Metrics for Text-to-Image Generation
- Title(参考訳): テキスト・画像生成における品質指標の検討
- Authors: Sebastian Hartwig, Dominik Engel, Leon Sick, Hannah Kniesel, Tristan Payer, Poonam Poonam, Michael Glöckler, Alex Bäuerle, Timo Ropinski,
- Abstract要約: AIベースのテキスト・ツー・イメージモデルは、現実的な画像の生成に優れるだけでなく、デザイナーが画像の内容をより細かく制御できるようになっている。
これらのアプローチはコンピュータグラフィックス研究コミュニティ内で注目を集めている。
本稿では,このようなテキスト・ツー・イメージの品質指標の概要を概観し,これらの指標を分類するための分類法を提案する。
- 参考スコア(独自算出の注目度): 9.753473063305503
- License:
- Abstract: AI-based text-to-image models do not only excel at generating realistic images, they also give designers more and more fine-grained control over the image content. Consequently, these approaches have gathered increased attention within the computer graphics research community, which has been historically devoted towards traditional rendering techniques, that offer precise control over scene parameters (e.g., objects, materials, and lighting). While the quality of conventionally rendered images is assessed through well established image quality metrics, such as SSIM or PSNR, the unique challenges of text-to-image generation require other, dedicated quality metrics. These metrics must be able to not only measure overall image quality, but also how well images reflect given text prompts, whereby the control of scene and rendering parameters is interweaved. Within this survey, we provide a comprehensive overview of such text-to-image quality metrics, and propose a taxonomy to categorize these metrics. Our taxonomy is grounded in the assumption, that there are two main quality criteria, namely compositional quality and general quality, that contribute to the overall image quality. Besides the metrics, this survey covers dedicated text-to-image benchmark datasets, over which the metrics are frequently computed. Finally, we identify limitations and open challenges in the field of text-to-image generation, and derive guidelines for practitioners conducting text-to-image evaluation.
- Abstract(参考訳): AIベースのテキスト・ツー・イメージモデルは、現実的な画像の生成に優れるだけでなく、デザイナーが画像の内容をより細かく制御できるようになっている。
その結果、伝統的なレンダリング技術に重点を置いてきたコンピュータグラフィックス研究コミュニティでは、シーンパラメータ(オブジェクト、材料、照明など)を正確に制御するアプローチが注目されている。
従来のレンダリング画像の品質は、SSIMやPSNRなどの確立された画像品質指標によって評価されるが、テキスト・ツー・イメージ生成のユニークな課題は、他の専用の品質指標を必要とする。
これらのメトリクスは、全体的な画質を測定するだけでなく、画像が与えられたテキストのプロンプトをどれだけよく反映しているかを計測し、シーンとレンダリングパラメータの制御を織り込む必要がある。
本調査では,このようなテキスト・ツー・イメージの品質指標の包括的概要を報告し,これらの指標を分類するための分類法を提案する。
我々の分類学は、画像全体の品質に寄与する構成品質と一般品質の2つの主要な品質基準が存在するという前提に基づいている。
メトリクス以外にも、この調査では、メトリクスが頻繁に計算される専用のテキスト-画像ベンチマークデータセットをカバーしている。
最後に,テキスト・ツー・イメージ・ジェネレーションの分野における限界と課題を特定し,テキスト・ツー・イメージ・アセスメントを行う実践者のためのガイドラインを導出する。
関連論文リスト
- Visual question answering based evaluation metrics for text-to-image generation [7.105786967332924]
本稿では,各オブジェクトに対する入力テキストと生成画像のアライメントを評価するための新しい評価指標を提案する。
実験結果から,提案手法はより微細なテキスト画像のアライメントと画質を同時に評価できる優れた指標であることがわかった。
論文 参考訳(メタデータ) (2024-11-15T13:32:23Z) - KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities [93.74881034001312]
テキスト・画像生成モデルにおける実体の忠実度に関する系統的研究を行う。
我々はランドマークの建物、航空機、植物、動物など、幅広い現実世界の視覚的実体を生成する能力に焦点をあてる。
その結果、最も高度なテキスト・画像モデルでさえ、正確な視覚的詳細を持つエンティティを生成できないことが判明した。
論文 参考訳(メタデータ) (2024-10-15T17:50:37Z) - TIER: Text-Image Encoder-based Regression for AIGC Image Quality
Assessment [2.59079758388817]
AIGCIQAタスクでは、画像は通常、テキストプロンプトを使用して生成モデルによって生成される。
既存のAIGCIQAメソッドのほとんどは、個々の生成された画像から直接予測されたスコアを回帰する。
本稿では,テキスト画像エンコーダに基づく回帰(TIER)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-08T12:35:15Z) - Stellar: Systematic Evaluation of Human-Centric Personalized
Text-to-Image Methods [52.806258774051216]
我々は,個々のイメージを入力し,生成プロセスの基盤となるテキストと,所望の視覚的コンテキストを記述したテキストに焦点をあてる。
我々は,既存の関連するデータセットよりも桁違いの大きさの個人画像と,リッチなセマンティックな接地真実アノテーションが容易に利用できるパーソナライズされたプロンプトを含む標準化データセット(Stellar)を紹介した。
被験者ごとにテストタイムの微調整を必要とせず,新しいSoTAを定量的かつ人為的に設定した,シンプルで効率的でパーソナライズされたテキスト・ツー・イメージのベースラインを導出する。
論文 参考訳(メタデータ) (2023-12-11T04:47:39Z) - Likelihood-Based Text-to-Image Evaluation with Patch-Level Perceptual
and Semantic Credit Assignment [48.835298314274254]
生成した画像の可能性を直接推定し,テキスト・画像生成性能を評価する。
高い確率は、知覚品質が向上し、テキスト画像のアライメントが向上することを示している。
これらのモデルの生成能力を、数百のサンプルで評価することができる。
論文 参考訳(メタデータ) (2023-08-16T17:26:47Z) - TIAM -- A Metric for Evaluating Alignment in Text-to-Image Generation [2.6890293832784566]
本稿では,プロンプトテンプレートに基づく新しいメトリクスを提案し,プロンプトで指定された内容と対応する生成された画像とのアライメントについて検討する。
我々のアプローチで得られた別の興味深い結果は、画像の品質が、画像のシードとして使われる雑音によって大きく変化することである。
論文 参考訳(メタデータ) (2023-07-11T09:23:05Z) - Transparent Human Evaluation for Image Captioning [70.03979566548823]
画像キャプションモデルのためのルーリックに基づく人間評価プロトコルを開発した。
人為的キャプションは機械的キャプションよりも著しく高品質であることを示す。
この研究は、画像キャプションのためのより透明な評価プロトコルを促進することを願っている。
論文 参考訳(メタデータ) (2021-11-17T07:09:59Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
一連の自然言語キャプションが与えられた場合、エージェントはキャプションに対応する一連の画像を生成する必要がある。
それまでの作業では、このタスクで合成テキスト・画像モデルより優れた繰り返し生成モデルを導入してきた。
従来のモデリング手法には、デュアルラーニングフレームワークの追加など、いくつかの改善点を提示する。
論文 参考訳(メタデータ) (2021-05-20T20:42:42Z) - Intrinsic Image Captioning Evaluation [53.51379676690971]
I2CE(Intrinsic Image Captioning Evaluation)と呼ばれる画像キャプションのための学習ベースメトリクスを提案する。
実験の結果,提案手法は頑健な性能を維持し,意味的類似表現やアライメントの少ない意味論に遭遇した場合,候補キャプションに対してより柔軟なスコアを与えることができた。
論文 参考訳(メタデータ) (2020-12-14T08:36:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。