論文の概要: Graph Algorithms with Neutral Atom Quantum Processors
- arxiv url: http://arxiv.org/abs/2403.11931v1
- Date: Mon, 18 Mar 2024 16:30:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 19:40:35.756123
- Title: Graph Algorithms with Neutral Atom Quantum Processors
- Title(参考訳): ニュートラル原子量子プロセッサを用いたグラフアルゴリズム
- Authors: Constantin Dalyac, Lucas Leclerc, Louis Vignoli, Mehdi Djellabi, Wesley da Silva Coelho, Bruno Ximenez, Alexandre Dareau, Davide Dreon, VIncent E. Elfving, Adrien Signoles, Louis-Paul Henry, Loïc Henriet,
- Abstract要約: 我々は中性原子量子処理ユニット(QPU)上で動作するグラフ問題に対する量子アルゴリズムの進歩を概観する。
最近導入された埋め込みと問題解決技術について論じる。
我々は、中性原子QPUのスケーラビリティ、制御可能性、繰り返し率の向上に重点を置いて、ハードウェアの継続的な進歩を明らかにした。
- 参考スコア(独自算出の注目度): 31.546387965618333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.
- Abstract(参考訳): ニュートラル原子技術は、量子アルゴリズムを実行するための最前線のプラットフォームとして位置づけられ、理論と実験の進歩を着実に証明してきた。
この技術のユニークな利点の1つは、qubitレジスタのジオメトリをショットからショットに再構成できることである。
このユニークな機能は、複雑な最適化と機械学習タスクの解決に重大な結果をもたらす、ハードウェアレベルでグラフ構造化問題のネイティブな埋め込みを可能にする。
量子ビットを駆動することで、グラフ複素特性を保持する処理された量子状態を生成することができる。
これらの状態は、問題への直接的な解決策や、ハイブリッド量子古典的スキームのリソースとして利用することができる。
本稿では、中性原子量子処理ユニット(QPU)上で動作するグラフ問題に対する量子アルゴリズムの進歩を概観し、最近導入された埋め込みと問題解決技術について議論する。
さらに、中性原子QPUのスケーラビリティ、制御可能性、計算繰り返し率の向上に重点を置いて、ハードウェアの継続的な進歩を明らかにした。
関連論文リスト
- Efficient charge-preserving excited state preparation with variational quantum algorithms [33.03471460050495]
本稿では、対称性と対応する保存電荷をVQDフレームワークに組み込むために設計された電荷保存型VQD(CPVQD)アルゴリズムを紹介する。
その結果、高エネルギー物理学、核物理学、量子化学への応用が示された。
論文 参考訳(メタデータ) (2024-10-18T10:30:14Z) - From Graphs to Qubits: A Critical Review of Quantum Graph Neural Networks [56.51893966016221]
量子グラフニューラルネットワーク(QGNN)は、量子コンピューティングとグラフニューラルネットワーク(GNN)の新たな融合を表す。
本稿では,QGNNの現状を批判的にレビューし,様々なアーキテクチャを探求する。
我々は、高エネルギー物理学、分子化学、ファイナンス、地球科学など多種多様な分野にまたがる応用について論じ、量子的優位性の可能性を強調した。
論文 参考訳(メタデータ) (2024-08-12T22:53:14Z) - State-Averaged Orbital-Optimized VQE: A quantum algorithm for the
democratic description of ground and excited electronic states [0.0]
SA-OO-VQEパッケージは、典型的な変分量子固有解法に基づくハイブリッド量子古典的概念によって両方の問題を解決することを目的としている。
SA-OO-VQEは、同じ足場上で退化状態(または準退化状態)を処理できるので、回避された交差や円錐交差に関する既知の数値最適化問題を回避することができる。
論文 参考訳(メタデータ) (2024-01-22T12:16:37Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - ATOM: An Efficient Topology Adaptive Algorithm for Minor Embedding in
Quantum Computing [18.594343052664335]
ハードウェアグラフの拡張可能な部分グラフである適応トポロジーの新たな概念を導入する。
ATOMは論理グラフからノードを反復的に選択し、ハードウェアグラフの適応トポロジーに埋め込む。
実験の結果、ATOMは最先端技術よりもはるかに少ない実行時間で実現可能な埋め込みを実現することができることがわかった。
論文 参考訳(メタデータ) (2023-07-04T17:45:07Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
まず、量子力学とグラフ理論の相関関係について、量子コンピュータが有用な解を生成できることを示す。
本稿では,その実践性と適用性について,一般的なグラフ学習手法について概説する。
今後の研究の触媒として期待される量子グラフ学習のスナップショットを提供する。
論文 参考訳(メタデータ) (2022-02-19T02:56:47Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。