Multistep Inverse Is Not All You Need
- URL: http://arxiv.org/abs/2403.11940v2
- Date: Fri, 6 Sep 2024 21:58:59 GMT
- Title: Multistep Inverse Is Not All You Need
- Authors: Alexander Levine, Peter Stone, Amy Zhang,
- Abstract summary: In real-world control settings, the observation space is often unnecessarily high-dimensional and subject to time-correlated noise.
It is therefore desirable to learn an encoder to map the observation space to a simpler space of control-relevant variables.
We propose a new algorithm, ACDF, which combines multistep-inverse prediction with a latent forward model.
- Score: 87.62730694973696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world control settings, the observation space is often unnecessarily high-dimensional and subject to time-correlated noise. However, the controllable dynamics of the system are often far simpler than the dynamics of the raw observations. It is therefore desirable to learn an encoder to map the observation space to a simpler space of control-relevant variables. In this work, we consider the Ex-BMDP model, first proposed by Efroni et al. (2022), which formalizes control problems where observations can be factorized into an action-dependent latent state which evolves deterministically, and action-independent time-correlated noise. Lamb et al. (2022) proposes the "AC-State" method for learning an encoder to extract a complete action-dependent latent state representation from the observations in such problems. AC-State is a multistep-inverse method, in that it uses the encoding of the the first and last state in a path to predict the first action in the path. However, we identify cases where AC-State will fail to learn a correct latent representation of the agent-controllable factor of the state. We therefore propose a new algorithm, ACDF, which combines multistep-inverse prediction with a latent forward model. ACDF is guaranteed to correctly infer an action-dependent latent state encoder for a large class of Ex-BMDP models. We demonstrate the effectiveness of ACDF on tabular Ex-BMDPs through numerical simulations; as well as high-dimensional environments using neural-network-based encoders. Code is available at https://github.com/midi-lab/acdf.
Related papers
- Dynamic layer selection in decoder-only transformers [21.18795712840146]
We empirically examine two common dynamic inference methods for natural language generation.
We find that a pre-trained decoder-only model is significantly more robust to layer removal via layer skipping.
We also show that dynamic computation allocation on a per-sequence basis holds promise for significant efficiency gains.
arXiv Detail & Related papers (2024-10-26T00:44:11Z) - Learning a Fast Mixing Exogenous Block MDP using a Single Trajectory [87.62730694973696]
STEEL is the first provably sample-efficient algorithm for learning the controllable dynamics of an Exogenous Block Markov Decision Process from a single trajectory.
We prove that STEEL is correct and sample-efficient, and demonstrate STEEL on two toy problems.
arXiv Detail & Related papers (2024-10-03T21:57:21Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition [50.064502884594376]
We study the problem of human action recognition using motion capture (MoCap) sequences.
We propose a novel Spatial-Temporal Mesh Transformer (STMT) to directly model the mesh sequences.
The proposed method achieves state-of-the-art performance compared to skeleton-based and point-cloud-based models.
arXiv Detail & Related papers (2023-03-31T16:19:27Z) - Value-Consistent Representation Learning for Data-Efficient
Reinforcement Learning [105.70602423944148]
We propose a novel method, called value-consistent representation learning (VCR), to learn representations that are directly related to decision-making.
Instead of aligning this imagined state with a real state returned by the environment, VCR applies a $Q$-value head on both states and obtains two distributions of action values.
It has been demonstrated that our methods achieve new state-of-the-art performance for search-free RL algorithms.
arXiv Detail & Related papers (2022-06-25T03:02:25Z) - CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via
Conditional Normalizing Flows [0.0]
We propose a real-time model for anomaly detection with localization.
CFLOW-AD consists of a discriminatively pretrained encoder followed by a multi-scale generative decoders.
Our experiments on the MVTec dataset show that CFLOW-AD outperforms previous methods by 0.36% AUROC in detection task, by 1.12% AUROC and 2.5% AUPRO in localization task, respectively.
arXiv Detail & Related papers (2021-07-27T03:10:38Z) - Learning Navigation Costs from Demonstration in Partially Observable
Environments [24.457042947946025]
This paper focuses on inverse reinforcement learning (IRL) to enable safe and efficient autonomous navigation in unknown partially observable environments.
We develop a cost function representation composed of two parts: a probabilistic occupancy encoder, with recurrent dependence on the observation sequence, and a cost encoder, defined over the occupancy features.
Our model exceeds the accuracy of baseline IRL algorithms in robot navigation tasks, while substantially improving the efficiency of training and test-time inference.
arXiv Detail & Related papers (2020-02-26T17:15:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.