論文の概要: DreamMotion: Space-Time Self-Similar Score Distillation for Zero-Shot Video Editing
- arxiv url: http://arxiv.org/abs/2403.12002v2
- Date: Mon, 15 Jul 2024 13:34:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 01:25:37.982976
- Title: DreamMotion: Space-Time Self-Similar Score Distillation for Zero-Shot Video Editing
- Title(参考訳): DreamMotion:ゼロショットビデオ編集のための時空間自己相似スコア蒸留
- Authors: Hyeonho Jeong, Jinho Chang, Geon Yeong Park, Jong Chul Ye,
- Abstract要約: ビデオスコアの蒸留は、ターゲットテキストで示される新しいコンテンツを導入することができるが、構造や動きのずれを引き起こすこともある。
本稿では, 原ビデオの時空間自己相似性と, スコア蒸留中の編集ビデオとを一致させることを提案する。
我々のアプローチはモデルに依存しないもので、カスケードと非カスケードの両方の動画拡散フレームワークに適用できる。
- 参考スコア(独自算出の注目度): 48.238213651343784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-driven diffusion-based video editing presents a unique challenge not encountered in image editing literature: establishing real-world motion. Unlike existing video editing approaches, here we focus on score distillation sampling to circumvent the standard reverse diffusion process and initiate optimization from videos that already exhibit natural motion. Our analysis reveals that while video score distillation can effectively introduce new content indicated by target text, it can also cause significant structure and motion deviation. To counteract this, we propose to match space-time self-similarities of the original video and the edited video during the score distillation. Thanks to the use of score distillation, our approach is model-agnostic, which can be applied for both cascaded and non-cascaded video diffusion frameworks. Through extensive comparisons with leading methods, our approach demonstrates its superiority in altering appearances while accurately preserving the original structure and motion.
- Abstract(参考訳): テキスト駆動拡散に基づくビデオ編集は、実際の動きを確立するという、画像編集の文献で遭遇しない独特な課題を提示する。
既存のビデオ編集手法とは異なり,本研究では,通常の逆拡散過程を回避し,すでに自然な動きを示すビデオから最適化を開始するために,スコア蒸留サンプリングに焦点を当てる。
分析の結果, ビデオスコア蒸留は, ターゲットテキストで示される新しいコンテンツを効果的に導入できる一方で, 重要な構造や動きのずれを引き起こす可能性があることがわかった。
これに対抗するために,本研究では,原ビデオと編集ビデオの時空間自己相似性をスコア蒸留中にマッチングすることを提案する。
スコア蒸留の応用により,本手法はモデル非依存であり,カスケードおよび非カスケードビデオ拡散フレームワークにも適用可能である。
先行手法との比較により,従来の構造と動きを正確に保ちながら外観を変化させる上で,その優位性を示す。
関連論文リスト
- Edit as You See: Image-guided Video Editing via Masked Motion Modeling [18.89936405508778]
画像誘導映像編集拡散モデル(IVEDiff)を提案する。
IVEDiffは画像編集モデル上に構築されており、ビデオ編集の時間的一貫性を維持するための学習可能なモーションモジュールを備えている。
本手法は,高画質な編集対象を忠実に処理しながら,時間的にスムーズな編集映像を生成することができる。
論文 参考訳(メタデータ) (2025-01-08T07:52:12Z) - DeCo: Decoupled Human-Centered Diffusion Video Editing with Motion Consistency [66.49423641279374]
DeCoは、人間と背景を別々に編集可能なターゲットとして扱うように設計された、新しいビデオ編集フレームワークである。
そこで本研究では,人体を利用した非結合型動的人体表現法を提案する。
本研究は, 通常の空間と画像空間にスコア蒸留サンプリングの計算を拡張し, 最適化時の人間のテクスチャを向上する。
論文 参考訳(メタデータ) (2024-08-14T11:53:40Z) - COVE: Unleashing the Diffusion Feature Correspondence for Consistent Video Editing [57.76170824395532]
ビデオ編集は新たな課題であり、現在のほとんどの手法では、ソースビデオを編集するために、事前訓練されたテキスト・トゥ・イメージ(T2I)拡散モデルを採用している。
我々は,高品質で一貫したビデオ編集を実現するために,COVE(Cor correspondingence-guided Video Editing)を提案する。
COVEは、追加のトレーニングや最適化を必要とせずに、事前訓練されたT2I拡散モデルにシームレスに統合することができる。
論文 参考訳(メタデータ) (2024-06-13T06:27:13Z) - Zero-Shot Video Editing through Adaptive Sliding Score Distillation [51.57440923362033]
本研究は,オリジナルビデオコンテンツの直接操作を容易にする,ビデオベースのスコア蒸留の新たなパラダイムを提案する。
本稿では,グローバルとローカルの両方の動画ガイダンスを取り入れた適応スライディングスコア蒸留方式を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:33:59Z) - SAVE: Protagonist Diversification with Structure Agnostic Video Editing [29.693364686494274]
従来の作品は通常、自明で一貫した形状でうまく機能し、元のものと大きく異なる体形を持つ難しいターゲットで容易に崩壊する。
動きのパーソナライズを単一音源映像から分離し,それに応じて動きの調整を行う。
我々はまた、新しい擬似光学フローを導入することにより、動き語を適切な動き関連領域に適応するように調整する。
論文 参考訳(メタデータ) (2023-12-05T05:13:20Z) - MagicProp: Diffusion-based Video Editing via Motion-aware Appearance
Propagation [74.32046206403177]
MagicPropは、ビデオ編集プロセスを、外観編集とモーション対応の外観伝搬という2つのステージに分割する。
第一段階では、MagicPropは入力ビデオから単一のフレームを選択し、フレームの内容やスタイルを変更するために画像編集技術を適用する。
第2段階では、MagicPropは編集されたフレームを外観参照として使用し、自動回帰レンダリングアプローチを使用して残りのフレームを生成する。
論文 参考訳(メタデータ) (2023-09-02T11:13:29Z) - FateZero: Fusing Attentions for Zero-shot Text-based Video Editing [104.27329655124299]
本研究では,FateZeroを提案する。FateZeroは,実世界のビデオに対して,プロンプトごとのトレーニングや使用専用のマスクを使わずに,ゼロショットのテキストベースの編集手法である。
本手法は、ゼロショットテキスト駆動型ビデオスタイルと、訓練されたテキスト・ツー・イメージモデルからローカル属性を編集する機能を示す最初の方法である。
論文 参考訳(メタデータ) (2023-03-16T17:51:13Z) - Dreamix: Video Diffusion Models are General Video Editors [22.127604561922897]
テキスト駆動画像とビデオ拡散モデルは最近、前例のない世代のリアリズムを達成した。
一般的なビデオのテキストベースの動きと外観編集を行うことができる最初の拡散ベース手法を提案する。
論文 参考訳(メタデータ) (2023-02-02T18:58:58Z) - Diffusion Video Autoencoders: Toward Temporally Consistent Face Video
Editing via Disentangled Video Encoding [35.18070525015657]
拡散オートエンコーダに基づく新しい顔映像編集フレームワークを提案する。
我々のモデルは拡散モデルに基づいており、再構築と編集の両方を同時に行うことができる。
論文 参考訳(メタデータ) (2022-12-06T07:41:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。