A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models
- URL: http://arxiv.org/abs/2403.12025v2
- Date: Fri, 04 Oct 2024 21:44:10 GMT
- Title: A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models
- Authors: Stephen R. Pfohl, Heather Cole-Lewis, Rory Sayres, Darlene Neal, Mercy Asiedu, Awa Dieng, Nenad Tomasev, Qazi Mamunur Rashid, Shekoofeh Azizi, Negar Rostamzadeh, Liam G. McCoy, Leo Anthony Celi, Yun Liu, Mike Schaekermann, Alanna Walton, Alicia Parrish, Chirag Nagpal, Preeti Singh, Akeiylah Dewitt, Philip Mansfield, Sushant Prakash, Katherine Heller, Alan Karthikesalingam, Christopher Semturs, Joelle Barral, Greg Corrado, Yossi Matias, Jamila Smith-Loud, Ivor Horn, Karan Singhal,
- Abstract summary: Large language models (LLMs) hold promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities.
Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity.
We present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions.
- Score: 20.11590976578911
- License:
- Abstract: Large language models (LLMs) hold promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities. Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity. We present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions and conduct a large-scale empirical case study with the Med-PaLM 2 LLM. Our contributions include a multifactorial framework for human assessment of LLM-generated answers for biases, and EquityMedQA, a collection of seven datasets enriched for adversarial queries. Both our human assessment framework and dataset design process are grounded in an iterative participatory approach and review of Med-PaLM 2 answers. Through our empirical study, we find that our approach surfaces biases that may be missed via narrower evaluation approaches. Our experience underscores the importance of using diverse assessment methodologies and involving raters of varying backgrounds and expertise. While our approach is not sufficient to holistically assess whether the deployment of an AI system promotes equitable health outcomes, we hope that it can be leveraged and built upon towards a shared goal of LLMs that promote accessible and equitable healthcare.
Related papers
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - IntelliCare: Improving Healthcare Analysis with Variance-Controlled Patient-Level Knowledge from Large Language Models [14.709233593021281]
The integration of external knowledge from Large Language Models (LLMs) presents a promising avenue for improving healthcare predictions.
We propose IntelliCare, a novel framework that leverages LLMs to provide high-quality patient-level external knowledge.
IntelliCare identifies patient cohorts and employs task-relevant statistical information to augment LLM understanding and generation.
arXiv Detail & Related papers (2024-08-23T13:56:00Z) - M-QALM: A Benchmark to Assess Clinical Reading Comprehension and Knowledge Recall in Large Language Models via Question Answering [14.198330378235632]
We use Multiple Choice and Abstractive Question Answering to conduct a large-scale empirical study on 22 datasets in three generalist and three specialist biomedical sub-domains.
Our multifaceted analysis of the performance of 15 LLMs uncovers success factors such as instruction tuning that lead to improved recall and comprehension.
We show that while recently proposed domain-adapted models may lack adequate knowledge, directly fine-tuning on our collected medical knowledge datasets shows encouraging results.
We complement the quantitative results with a skill-oriented manual error analysis, which reveals a significant gap between the models' capabilities to simply recall necessary knowledge and to integrate it with the presented
arXiv Detail & Related papers (2024-06-06T02:43:21Z) - Evaluating large language models in medical applications: a survey [1.5923327069574245]
Large language models (LLMs) have emerged as powerful tools with transformative potential across numerous domains.
evaluating the performance of LLMs in medical contexts presents unique challenges due to the complex and critical nature of medical information.
arXiv Detail & Related papers (2024-05-13T05:08:33Z) - RJUA-MedDQA: A Multimodal Benchmark for Medical Document Question
Answering and Clinical Reasoning [14.366349078707263]
RJUA-MedDQA is a comprehensive benchmark in the field of medical specialization.
This work introduces RJUA-MedDQA, a comprehensive benchmark in the field of medical specialization.
arXiv Detail & Related papers (2024-02-19T06:57:02Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
We introduce Asclepius, a novel benchmark for evaluating Medical Multi-Modal Large Language Models (Med-MLLMs)
Asclepius rigorously and comprehensively assesses model capability in terms of distinct medical specialties and different diagnostic capacities.
We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - LLM on FHIR -- Demystifying Health Records [0.32985979395737786]
This study developed an app allowing users to interact with their health records using large language models (LLMs)
The app effectively translated medical data into patient-friendly language and was able to adapt its responses to different patient profiles.
arXiv Detail & Related papers (2024-01-25T17:45:34Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
We analyze the intersection of fairness in machine learning and healthcare disparities.
We provide a critical review of the associated fairness metrics from a machine learning standpoint.
We propose several new research directions that hold promise for developing ethical and equitable ML applications in healthcare.
arXiv Detail & Related papers (2022-06-29T04:32:10Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.