LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment
- URL: http://arxiv.org/abs/2501.03624v1
- Date: Tue, 07 Jan 2025 08:49:04 GMT
- Title: LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment
- Authors: Gaoussou Youssouf Kebe, Jeffrey M. Girard, Einat Liebenthal, Justin Baker, Fernando De la Torre, Louis-Philippe Morency,
- Abstract summary: This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.
We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.
Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
- Score: 75.44934940580112
- License:
- Abstract: This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment using the Montgomery-Asberg Depression Rating Scale (MADRS). We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews. Our approach, tested on 236 real-world interviews from the Context-Adaptive Multimodal Informatics (CAMI) dataset, demonstrates strong correlations with clinician assessments. The Qwen 2.5--72b model achieves near-human level agreement across most MADRS items, with Intraclass Correlation Coefficients (ICC) closely approaching those between human raters. We provide a comprehensive analysis of model performance across different MADRS items, highlighting strengths and current limitations. Our findings suggest that LLMs, with appropriate prompting, can serve as efficient tools for mental health assessment, potentially increasing accessibility in resource-limited settings. However, challenges remain, particularly in assessing symptoms that rely on non-verbal cues, underscoring the need for multimodal approaches in future work.
Related papers
- Conversation AI Dialog for Medicare powered by Finetuning and Retrieval Augmented Generation [0.0]
Large language models (LLMs) have shown impressive capabilities in natural language processing tasks, including dialogue generation.
This research aims to conduct a novel comparative analysis of two prominent techniques, fine-tuning with LoRA and the Retrieval-Augmented Generation framework.
arXiv Detail & Related papers (2025-02-04T11:50:40Z) - Generative LLM Powered Conversational AI Application for Personalized Risk Assessment: A Case Study in COVID-19 [6.367429891237191]
Large language models (LLMs) have shown remarkable capabilities in various natural language tasks.
This work demonstrates a new LLM-powered disease risk assessment approach via streaming human-AI conversation.
arXiv Detail & Related papers (2024-09-23T13:55:13Z) - Chain-of-Thought Prompting for Demographic Inference with Large Multimodal Models [58.58594658683919]
Large multimodal models (LMMs) have shown transformative potential across various research tasks.
Our findings indicate LMMs possess advantages in zero-shot learning, interpretability, and handling uncurated 'in-the-wild' inputs.
We propose a Chain-of-Thought augmented prompting approach, which effectively mitigates the off-target prediction issue.
arXiv Detail & Related papers (2024-05-24T16:26:56Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - Adapting Mental Health Prediction Tasks for Cross-lingual Learning via Meta-Training and In-context Learning with Large Language Model [3.3590922002216193]
We use model-agnostic meta-learning and leveraging large language models (LLMs) to address this gap.
We first apply a meta-learning model with self-supervision, which results in improved model initialisation for rapid adaptation and cross-lingual transfer.
In parallel, we use LLMs' in-context learning capabilities to assess their performance accuracy across the Swahili mental health prediction tasks.
arXiv Detail & Related papers (2024-04-13T17:11:35Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
We take a novel approach that leverages large language models to synthesize clinically useful insights from multi-sensor data.
We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data relate to conditions like depression and anxiety.
We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
arXiv Detail & Related papers (2023-11-21T23:53:27Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs)
In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol.
We propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators.
arXiv Detail & Related papers (2023-05-22T15:12:43Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation.
We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias.
We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning.
arXiv Detail & Related papers (2022-12-26T14:28:24Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
We propose a new framework named ENIGMA for estimating human evaluation scores based on off-policy evaluation in reinforcement learning.
ENIGMA only requires a handful of pre-collected experience data, and therefore does not involve human interaction with the target policy during the evaluation.
Our experiments show that ENIGMA significantly outperforms existing methods in terms of correlation with human evaluation scores.
arXiv Detail & Related papers (2021-02-20T03:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.